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PREFACE

This report describes the results of a research project funded under the
Small Business Innovative Research (SBIR) program by the U.S. Army Electronic
Proving Ground. Phase 1 of this project was conducted from September 1986 to
March 1987. It resulted in a report and a prototype software program, TESTER.
Phase 2 was conducted from September 1988 to September 1990 and resulted in a
five-volume report and a software prototype, TESTER_C. Voluwe 1 of the report
Handbook for Testing Expert Systems, provides a comprehensive approach to
testing expert systems. Volume 2, Compendium of Lessons Learned from Testing
Al Systems in the Army, provides the results of a survey of software testers
and offers suggestions for improving the practice of testing Al software.
Yolume 3, A Guide to Developing Small Expert Systems, provides a step-by-step
guide for a beginner. Volume 3 was also delivered in a hypertext version.
Volume 4, Published Articles, contains copies of the six published articles
developed in this project. Volume 5, User’s Manual for TESTER C, is a user's
manual for the prototype software that implements the multiattribute utility
analysis (MAUA) framework for testing and evaluating expert systems described

in Volume 1.

Volume 1 is intended as a handbook that can be used by a tester inter-
ested in testing a knowledge-based system or an expert system. The reader
interested in an overview of our methods may wish to skim Chapter 7, "Pulling
It All Together," first. He or she may then wish to review the attributes in
the MAUA hierarchy presented in the latter half of Chapter 3, "Proposed MAUA
Framework for Testing and Evaluating Expert Systems.” A detailed example of
the method is given in Volume 5, User’s Manual for TESTER C. After this
introductory review, a tester should read Chapters 1 and 2 to gain an overview
of the expert system testing methods. The reader may then wish to pick and
choose among the specific methods described in Chapters 3, 4, 5, and 6 to gain
more in-depth knowledge of the techniques needed for the particular test.
Chapter 8 contrasts the methods of this Handbook with other approaches to
software testing and evaluation. Finally, Chapter 9 describes areas where

further research and development are needed.
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As with many monographs on software, this one mentions certain products. .
EXSYS is a trademark of Exsys, Inc. CLIPS is a product of NASA. Other
product names used in thils document may be trademarks of their respective

companies.
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CHAPTER 1:

TESTING AND EVALUATING EXPERT SYSTEMS:
AN OVERVIEW AND ILLUSTRATICN

The test and evaluation of expert systems is becoming increasingly
important, for expert systems are moving out of the laboratery and into
operational use. How good are these systems? Do they do what thelr devel-
opers claim? Do they meet the users’ requirements? Are their knowledge bases
reliable and valid? Do they actually improve operator (and organizational)
performance? Can they be effectivelv integrated with and maintained among
more conventional software systems? Test and evaluation methods provide a
means of answering these and many other questions for the user community.

More generally, test and evaluation provides the feedback required for keeping
the expert system development process on track and, thereby, increasing the

probability that the expert system will be used and effective.

Expert system technology holds great promise for many reasons. First,
the financial cost to build expert systems has gone down. Expert system
software (e.g., shells) is now much more affordable than it was just five
years ago. Moreover, many shells are now available on personal computers,
thereby decreasing the implementation costs and problems that existed when one
needed expensive, expert system hardware. In addition, we now have a wuch
better idea of how to buiid expert systems. Our experience in building expert
systems has gone up significantly in a very short time. [Note that we use the
term “"expert system" generally, to include all classes of knowledge-based

systems. ]

Second, we have some clear commercial successes to point to; successes
other than MYCIN, PROSPECTOR, XCON, or other pioneering systems. To il-
lustrate this point, we can point to expert systems actually helping to (1)
process loan applications for Citibank (Keyes, 1989), (2) monitor the safety
of mines in the J.S. and other countries, (Newquist, 1988), (3) process
insurance claims for Blue Cross/Blue Shield of South Carolina (Weitzel and
Kerschberg, 1989), (4) dlagnose functional problems with robots at Ford Motor
Cospany (Smith, 1988), {(5) monitor the performance of on-line networks at

Sumitomo Metal Industries of Japan (Newquist, 1988), etc.
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Third, indications are that expert systems have barely impacted their .
potential market. To quote Wolfgram et al. (1987, p. 21), "Many industry
analysts estimate that currently only 10% of potrntial expert system applica-
tions are being recognized ...” And even after 1988, which Chapnick (1988, p.
5) indicated "won’t be considered a banner one for Al ..., everyone is still
predicting relatively high compounded growth rates (greater than 30%) through
the mid-1990s." Moreover, this estimate does not appear t: include mass-
market expert systems applications, which combine expert-systems technology
with traditional applications-oriented software for the mass market. Examples
of currently available mass-market expert systems Iinclude AskDan for tax
preparation, SELLSTAR for sales-tracking and advice, Ex-Sample for determining
the appropriate sample size for a research project, and STS/Expert for stocks.
To quote Eliot (1989, p. 9), "Mass-market applications are the future of the

expert-systems industry and will affect applications everywhere."

Although there have been successes, there also have been fallures. In
fact, many expert systems that are developed are simply not used. To quote
Casey (1989, p. 44), "For every success story, however, many expert-system
development projects have failed or are in deep trouble. Many expert systems ‘
end up either ‘dead on arrival’ (never work), among the ranks of the un-
employed (never used), or serving a life sentence in research and development
(never finished)." The Department of Defense, for example, has spent millions
of dollars on expert system technology with minimal transfer to operational
personnel. And private industry has spent millions of dollars developing
expert systems with minimal impact on the size of the workforce these expert

systems were to replace.

The reasons for this state of affairs lie, of course, on both sides of
the fence. As Andricle (1989, p. 7) points out when discussing all forms of
decision support systems technology, "Vendors have vested interests in
overselling, and users are inclined to want to believe that a solution to all
their proble: i can be found on one or two floppy disks."” However, a focus on
motives obscures the bigger issues. For as Andriole (p. 7) points outs, "The
truth of the matter is that the state of the art of decision support systems

technology is unbalanced and evolving."
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These statements are just as true for expert systems technology. What
has been unbalanced i{s that, all the rhetoric to the contrary, expert system
development efforts have until recently been primarily technology-driven.
What is evolving is a more requirements-driven, expert systems developmenc
process. The requirements-driven evolution is, of course, taking many forms.
Three aspects of it are overviewed here. When considering them, the reader

should keep the concept of "balance” in mind.

First, there is a growing realization that the success of an expert
system development effort depends on picking the right problem. To quote
Casey (1989, p. 44), "One simple rule for success that all would-be developers
should repeat out loud each day during morning calisthenics is, ‘Pick the
right problem.’ Just as location is the biggest factor in real estate,
selecting the right problem is absolutely essential to expert system develop-
ment. Unfortunately, the importance of selecting the right application is
often lost in the excitement and enthusiasm accompanying the initial decision
to use expert-system technology." Nor is it an easy problem. Casey has even
built an expert system called ESES (Expert System Expert System) to help in

problem selection,

Second, the users’ needs are an essential aspect of problem selection.
The concern with "picking the right problem™ is, of course, not new. In the
past, however, it has primarily focused on the characteristics of the task and
the experts who would provide the knowledge. Does the task primarily require
symbolic reasoning? Does it require the use of heuristics? Are decisions
based on incomplete and/or uncertain information? 1Is there a knowledge czar
or are there high levels of agreement among experts? Are experts available

over a long period of time?

More recently, the questions have also begun emphasizing the potential
user’'s explicit needs. To quote Smith (1988, p. 53), "In addition, you should
try to choose applications that: Are real. Don't try to solve problems that
don’t exist—you’ll only create systems nobody will use. Fit in with your
organization’s future direction and plans ... Have measurable benefits. Pay
particular attention to such things as cost reductions and improvements in

quality, productivity, and working conditions. However, don’'t overlook
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intangible benefits. These are sometimes referred to as ‘'warm fuzzies,'’ ‘

because even though you can’t quantify them, they are nice to have."

Third, test and evaluation are essential to keeping the expert system
development effort focused on users’ needs. Again, one might say, this isn't
news. After all, isn’t the purpose of prototyping to develop an illustrative
system so that potential users can evaluate it? So that they can make sure

that the final product meets their needs?

Unfortunately, prototyping has not been as successful as we might like
to believe. In an editorial in AI Expert, Chapnick (1988, p. 5) referred to
"{t]he more general problem of the lamentable, unimplementable prototype ..."
And Cholawsky (1988, p. 42) points out that "(t}he inability to wmove from a
prototype effort to an operational, delivered system is a chronic problem for
organizations developing expert systems." In an effort to help cure the
"prototyping blues." she emphasizes the importance of prototype planning that
explicitly identifies objectives and evaluation criteria for determining
prototype success. Nor is she alone. Adelman and Ulvila (in press), Andriole
(1989), and much earlier, Gaschnig et al. (1983) have all argued for the .
importance of specifying explicit test and evaluation criteria early in the
prototype development process in order to keep development on track. Yet a
recent survey by Constantine and Ulvila (in press) has found that such
criteria or, more generally, requirements, are not specified in many (if not

most) expert system development efforts.

Concurrent with the evolution of a more requirements-driven development
process has been the evolution of methods for testing expert systems against
evaluation criteria. The American Association for Artificial Intelligence
(AAAI) held its first workshop on test and evaluation methods in Minneapolis,
MN, in August, 1988. This, the 1989 IJCAI workshop, and the 1990 AAAI
workshop focused primarily on methods for assessing the logical consistency
and completeness of the knowledge base (AAAI Workshop Proceedings, 1988;
IJCAI-89 Workshop Proceedings, 1989). There is a growing awareness, however,
that testing and evaluation is multi-faceted. As experience in software
testing (e.g., see Beizer, 1984; Hamlet, 1988) has shown, no single method {is
completely adequate. 1In the case of expert systems, one must also consider ‘
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methods for assessing (1) the subjective opiuion of users (e.g., Adelman and
Donnell, 1986; Klein and Brezovic, 1988; Ulvila et al., 1987); (2) the
predictive accuracy of the knowledge base (e.g., see Lehner, 1989; Lehner and
Ulvila, 1989; O’'Keefe et al., 1987); and (3) the overall performance of the
organization using the system (e.g., Adelman, 1990a,b; Adelman and Ulvila, in

press).

The purpose of this book is to show one how to perform formal tests and
evaluations of expert system technology. It is a methods bock. The goal is
to provide one with an understanding of the procedures required to perform
effective tests and evaluations, and how to incorporate these procedures into
the expert system development process. Moreover, to the extent possible, this
book provides illustrative examples of how to utilize formal test and evalua-
tion procedures to help readers to apply these procedures to ongoing expert
system developments. In short, the orientation is to provide a step-by-step
description of how to test and evaluate expert systems. This volume is
intended primarily for major expert systems. Volume 3 of this report provides

guidance for small expert systems.

It must be emphasized at the outset, however, that no methods book on
test and evaluation can be a "cookbook" because the focus of test and evalua-
tion is to ensure that the technology being developed is consistent with the
user’'s requirements. Unfortunately, users are often uncertain of exactly what
their decision requirements are, regquirements analysls techniques are more
than fallible, and the procedures for converting requirements analyses to
system functions are still being refined by researchers. As a result, the
development team is faced with numerous judgments and decisions. Indeed, it
is the pervasiveness of these judgments and decisions that make successful

expert system development so difficult.

Broadly speaking, test and evaluation methods are tools for structuring
and making the judgments and decisions ipherent in the system development
process. As such, they represent the control mechanism for finding out what
needs to be done to increase the probability that the expert system will be
used by the decision maker(s) for whom the system is being built and, in turn,

fmprove organizational decision making and performance. Because evaluation

1-5




serves as a control mechanism for the development process, readers also need a
broad framework for considering evaluation issues, as well as specific test
and evaluation methods, in order to keep the development process on track.
This book will provide readers with such a framework. Moreover, the book wili
show readers how the broad framework and specific methods can be integrated

into the development process.

Thus far, we have not distinguished between "test"” and "evaluation." We
will do so here. Specifically, we will use the term "test" to refer to the
process of measuring the expert system’'s performance against specific cri-
teria. These criteria are generally referred to as "measures of effective-
ness" (MOEs). The measurement approach may be (1) logically-based, such as
testing the logical consistency of the rules in the knowledge base; (2)
empirically-based, such as testing the predictive accuracy of the knowledge
base against the judgmental accuracy of experts or ground-truth measures of
accuracy; (3) observationally-based, such as recording the features of the
expert system that users routinely use when solving test cases; or (4)
subjectively-based, such as using questionnaires to assess users’ opinions of

the system’'s strengths and weakness.

We will use the term "evaluation” to refer to the process of aggreiating
all the different tests in order to reach an overall conclusion about the
expert system. Central to the concept of "evaluation" is the concept of
"relative importance weights,” or alternative decision rules, for combining
good test scores on some MOEs with bad test scores on others. Relative
importance weights represent personal judgments. We will argue from the
outset that such judgments should be made by the decision makers, or their
representatives, who are sponsoring the development of the expert system——not
by the testers. This initially might be disturbing to, and difficult for,
members of the sponsoring, development, and evaluation teams, for it em-
phasizes the subjective process decision makers go through when evaluating the
overall value of an expert system. However, it is quite consistent with a
requirements-driven development approach. Moreover, to quote Riedel and Pitz
(1986, pp. 987-988), "There is no way to avoid the fact that the overall MOZ
must be based on such judgments, or the fact that no mechanical procedure can

replace this subjective assessment ..."
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The remsinder of the first chapter is divided inte three sections. The
first section presents a decision-making perspective and paradigm as a
backdrop for considering the decision to develop an expert system, and the
role of test and evaluation with respect to this decision. The second section
overviews a multi-faceted, test and evaluation approach for providing the
range of information required by the organization building the experc system.
The third section provides a case study showing how this approach can provide

this information and, thereby, enhance prototype development.

A DECISION-MAKING PERSPECTIVE AND PARADIGM

When testing and evaluating expert systems, it is important to remember
the obvious, which is that the overall aim of an expert system is to improve
the effectiveness of the organization using i{t. Improved organizational
effectiveness can occur in many ways, such as through decreased personnel
costs, greater access to expert knowledge, or improved decision making. The
latter focus will be emphasized throughout this book because of the ever
increasing importance given to effective decision making for the success of

post-industrial organizations (e.g., see Huber, 1986).

Simon (1960) has used three categories to describe decision-making
activities: intelligence, design, and choice. "Intelligence" refers to the
activities inherent in problem identification, definition, and diagnosis. It
is, as Huber (1980) points out, the conscious process of trying to explore the
problem in an effort to find out the current state of affairs, and why it does
not match our desires. "Design" refers to those activities inherent in
generating alternative solutions or options for solving the problem. It
involves "... identifying items or actions that could reduce or eliminate the
difference between the actual situation and the desired situation" (Huber,
1980, p. 15). And "choice" refers to those activities inherent in evaluating
and selecting from the alternatives. It is the action that most people think

of when one makes a decision.
As Huber (1980) and others (e.g., Andriole, 1989; Sage, 1986; Wohl,

1981) have pointed out, decision-making activities are a subset of problem-

solving activities. For example, the first three steps in Huber’'s five-step
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problem-solving paradigm are those activities that require (1) problem
identification, definition, and diagnosis; (2) the generation of alternative
solutions; and (3) evaluation and choice among alternative solutions. These
steps are conceptually identical to Simon's decision-making categories. The
fourth step in Huber’'s paradigm involves those activities inherent in imple-
menting the chosen alternative. The fifth step involves those activities
inherent in reviewing or monitoring the implemented action in an effort ®...to
see that what actually happens is what was intended to happen" (Huber, 1980,
p- 19). If there is a significant mismatch between the actual and desired
state of affairs, we are back to step #1, exploring the problem.

Although it is presented within the context of military tactical
decision making (and aiding), Wohl (1981) has presented a problem-solving
paradigm that explicitly identifies the evaluation functions inherent in
decision making. Figure 1-1 presents Wohl's (1981, p. 625) SHOR (Stimulus-
Hypothesis-Option-Response) paradigm. Intelligence activities are differenti-
ated between the Stimulus and Hypothesis elements of the SHOR paradigm. In
particular, the Stimulus element includes data collection, correlation,
aggregation, and recall activities; it naturally includes many of the activi-
ties also included in Huber’s last problem-solving stage—that of monitoring
the situation. The Hypothesis element is that aspect of Intelligence that
involves creating alternative hypotheses to explain the cause(s) of the
problem, evaluating the adequacy of each hypothesis, and selecting one
hypothesis as the most likely cause of the data.

On the basis of the selected hypothesis, or hypotheses if one cannot
differentiate between hypotheses because of the uncertainty and/or ambiguity
in the data, the decision maker generates alternative options for solving the
problem. As in Simon’s and Huber's paradigms, the Option element in the SHOR
paradigm explicitly differentiates between option creation, evaluation, and
selection activities. Finally, on the basis of the selected option, the
decision maker takes action, which includes the planning, organization, and
execution of a Response to the problem, analogous to the fourth step in

Huber's problem-solving framework.
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Figure 1-1: The SHOR Paradigm
(from Wohl, 1981; last column for illustrative purposes only)

As Wohl (1981, p. 626) points out, the "... SHOR paradigm is basically
an extension of the stimulus response (SR) paradigm of classical behaviorist
psychology to provide explicitly for the necessity to deal with two realms of
uncertainty in the decision-making process: (1) information input uncertain-
ty, which creates the need for hypothesis generation and evaluation; and (2)
consequence-of-action uncertainty, which creates the need for option genera-
tion and evaluation." Different elements of the SHOR paradigm become more or
less important depending on where the uncertainty resides. For example,
"Where options are more or less clearly prescribed but input data is of low
quality (e.g., as in military intelligence analysis), a premium is placed upon
creation and testing of hypotheses (e.g., where is the enemy and what is he
deing?). Where input data are of high quality but options are open-ended
(e.g., as in the Cuban missile crisis), a premium is placed upon creation and

analysis of options and their potential consequences (e.g., if we bomb the
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missile sites or if we establish a full-fledged naval blockade, what will the
Russians do ?) ... By contrast, tactical decislon-making in support of
combined air-land operations is generally characterized by both poor auality
input data and open-ended options; hence, there is a much greater need than i-.
other military situations for rapid hypothesis and option processing in the
field" (Wohl, 1981, p. 626).

As Adelman (1987) has pointed out, the SHOR paradigm also is consistent
with more currently popular cognitively oriented paradigms. For example, the
script theory representation by Shank and Abelson (1977), the schema theory
representation by Noble (1989), and the fuzzy set decision rule representation
by Zimmermann and Zysno (1980) all have both situation assessment and action
components. The situation assessment component typically operates via a
‘pattern matching'’ mechanism, which is consistent with the Stimulus and
Hypothesis elements of the SHOR paradigm. Once a script or schema is ac-
tivated, there is a set of actions that is consistent with it; this is

consistent with the Option and Response elements of the SHOR paradigm.

When considering expert system test and evaluation, it is important to
remember that the decision makers who have decided to build an expert system
are in a tactical or strategic decision-making situation, depending on the
forecasting and planning horizon under which they are operating. Moreover,
the situation can be represented by the SHOR paradigm. For, on the basis of
available and projected data, the decision makers are making hypotheses about
the nature of the environment that they and their organization will face in
the future. That is, they are forecasting the future state of affairs and
trying to assess whether their current actions will be effective or not in
achieving their future goals and objectives. And they are generating options
to deal with their hypotheses regarding potential future performance short-
falls. Given all the stimuli about the dynamic nature of future business and
government (particularly military) environments, the ever increasing role that
decision making will play in organizational success, the decreasing financial
cost of computer hardware, and the ever increasing power of computer systems
to support decision making, it is not surprising that decision makers in manv
organizations think that expert system technology will be an effective

response to their hypotheses about the future.
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It is important for us to keep this "big picture” in mind when testing
and evaluating expert svstems. We must remember that hypotheses about the
problem environment and judgments about the relative effectiveness (or
utility) of various options are often made, respectively, under both informa-
tion input and consequence-of-action uncertainty. It is important to realize
that, at the time that it is made, the decision to develop an expert system
i3, in fact, nothing more than a hypothesis that this option will be an
effective response to the problem environment. This may or may not be true.
Other options, either singularly or in combination with the development of an
expert system, may be better options. From this perspective, it can be argued
that the ultimate goal of test and evaluation is to help senior-level decision
makers in an organization decide whether the option of developing an expert
system, either singularly or in combination with other actions, is an effec-
tive organizational response for dealing with the present and/or future

problem environment.

Once the development process is underway, the application of formal test
and evaluation methods permits one to monitor the perceived utility of the
expert system under development and take corrective action to increase the
probability of its use and effectiveness. This can be seen by using the SHOR
paradigm to represent the expert system development process. Specifically,
the development team’s job is to plan, organize, and execute the selected
option, which in this case is the development of a specific expert system.

The purpose of test and evaluation is to systematically gather, filter, and
aggregate data (i.e., stimuli) about the expert system under development in
order to test the hypothesis that all is going well; that is, that the expert
system will do what decision makers and users want it to do and, thereby, be
valuable to them. 1If all is not going well, that is, if there is a problem or
if it is not clear what action to take, then options need to be generated,
evaluated. and selected for correcting the problem(s) so that the development
process can be kept on track. This clearly requires iteration, and is quite

consistent with a requirement-driven prototyping process.
As the above discussion implies, there are two groups of persons that

utilize and, indeed, require the results of formal tests and evaluations. The

first group is the development team. It is composed of user(s), designers,
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knowledge engii 2:ers, domain experts, and programmers. The second group is “he
sponsoring team. If an expert system is being developed only for the use of a
particular decision maker, then he or she is both the user and financial
sponsor of the expert system. However, for many expert system develcpment
efforts, particularly those funded by the federal government, the sponsors and
users of the expert system are distinctly different groups of people. As a
result, "Policy decisions must be made about the system’s design, implementa-
tion, fielding, funding, and incorporation into the organizational function-
ing. These decisions are made by program managers and sponsors and more
general policymakers. The last group is usually interested in more general
information about the aid’'s potential or actual effectiveness" (Riedel and
Pitz, 1986, p. 984).

As Beizer (1984), Hetzel (1984), Riedel and Pitz (1986), and others have
recommended, we will assume that the development team also includes testers
and evaluators whose job is to obtain the test and evaluation data required to
keep the development effort on track. For the simplicity of presentation,
however, we will often use the terms "testers” and "evaluators” interchangeab-
ly. We realize that in many organizations, such as in the U.S. Army for
example, "testers” and "evaluators" are distinctly different groups of trained
individuals who would be found in different organizational units. We will try
to maintain the distinction here too. However, we will at times blur the
distinction to facilitate the presentation of material. We do not feel
uncomfortable in doing so, because, from the perspective of this book, both
"testers” and evaluators should be proficient in obtaining both test and

evaluation data.

The sponsoring and development groups make different types of decisions
during the expert system development process and, consequently, require
different types of information upon which to base those decisions. Ideally,
good tests and evaluations have to be capable of addressing the different
needs of both groups. This requires the application of different test and
evaluation methods, appropriately matched to the information and decision

needs of different persons throughout the development process.
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Unfortunately, it is often not possible o systematically incorporate all
members of the sponsoring group into the enpert system development process.
(In fact, it 1s often difficult to get users to actively parcicipate as
members of the development team, although both research and common sense have
demonstrated the importance of thelr participation to the successful implemen-
tation of all forms of decision support technology.) Numerous reasons are
given for their lack of invo.vement, including busy schedules, a belief in
"hands-off" policy during development, a lack of desire to be involved, a lack
of money, etc. Evaluators need to be conscious of this problem and do what
they can to incorporate members of the sponsoring team into the development
process. Throughout the book we will discuss explicit evaluation methods for
addressing the policymaking decisions about which members of the sponsoring

team need Iinformation.

As the above discussion suggests, many expert system development efforts
do not use explicit evaluation methods to provide a control mechanism for the
development process. Obviously, we think that they should and, we will argue,
that doing so will increase the probability of the successful implementation
and value of the expert svstem. It is important to note that, as Riedel and
Pitz (1986, p. 994) point out, "... user satisfaction with the aid is not a
sufficient criterion for »valuation because of the extraneous factors that can
affect satisfaction." There are numerous other factors, such as the quality
of the decisions made with the expert system, the logical soundness, complece-
ness and predictive accuracy of the knowledge base, the effectiveness of the
match with personnel and organizational characteristics, ete., that go into
making a good expert system. User satisfaction is, however, a necessary
condition for use of the expert system. "... [I]n the final analysis, the
purpose of developing an aid is to have it used, presumiung it to be effective.
Similarly, the purpose of the evaluation is to produce information that is
used. This concern for impact on design or policy decisions is the deter-
minant of what evaluation information to obtain. Yow to obtain that informa-

tion in a valid manner is left to the expertise of the evaluator."”
The evaluator’'s job i{s to select the method(s) that is most appropriate

for the decision maker's questlons, stage of the expert system development

process, available funds, etc. The basic requirement is for an eclectic
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approach that is based on the evaluation purpose and situation. The goal
throughout is to provide guidance in making the judgment. and decisions
inherent in building the expert system. It is for this reascn that evaluation
has been re.erred to as the control mechanism that keeps the development

process on track.

A MULTI-FACETED TEST AND EVALUATION APPROACH

Adelman and Donnell (1986) presented a three-phased (or faceted)
approach for tesuing and evaluating decision support systems; Adelman and
Ulvila (in press) recently extended it to expert systems and showed how it
could be used when selecting classes of test and evaluation methods., The
three-phase evaluatior. approach is composed of a subjective phase for obtain-
ing users’ opinions regarding the system's strengths and weaknesses; a
technical evaluation phase for "looking inside the black box;" and an empiri-
cal evaluation phase for assessing the system’s im} ct on performance.
Specifically, the subjective evaluation phase focuses on evaluating the expert
system from the perspective of potential users. The goal of the subjective
evaluation is to assess whether the users like the expert syscem, what they
consider to be its strengths and weaknesses, and what changes they would

suggest for improving it.

The technical phase focuses on evaluating the expert system from both an
internal (heuristic) perspective and an external (systemic input/output)
perspective. For example, most people considering the technical evaluation of
an expert system might focus on assessing the logical (and functional)
adequacy and predictive accuracy of its krnwledge hase. Rushby (1988) has
called these "competency requirements." However, from a transfer and main-
tenance perspective, one also needs to be concerned with conventional test and
evaluation issues, such as whether the system can be effectively and effi-
ciently Integrated with other software and hardware systems in the operational
environment, and whether it was designed consistent with the organization’s
design and coding standards. Rushby has called thesc¢ concerns "service
requirements.” A comprehensive test and evaluation framework n edr to addres:

both classes of "technical” requirements.
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The empirical evaluation phase focuses on obtaining objective measures
of the system's performance. The goal of the empirical phase is to assess,
for example, whether the system makes proper recommendations and whether
persons make significantly better or faster decisions or use significantly
more information working with, rather than without, the system, and to
identify mechanisms for improving performance. It is important to note that
the potential users of expert system technology may not be experts in the
substantive domain. In these cases, one needs both experts and users to
participate in the evaluation. The experts are needed for the technical
evaluation of the knowledge base; the users for the empirical evaluation of
system performance. If possible, experts should also participate in the
empirical evaluation in order to systematically assess whether system perfor-
mance is a function of user type. In addition, as will be illustrated in the
case study presented later in this chapter, participation of domain experts in
the empii.:al evaluation often provides insight into the functional complete-

ness and predictive accuracy of the knowledge base.

For an evaluation to be effective, the evaluator must decide in advance
what is to be tested. This is done by identifying measures of effectiveness
(MOEs) that are designed to answer the evaluator’'s questions. These questions
depend on who needs the information—that is, whether it is a member of the
development or sponsoring team—the type of information needed, the stage of
the development process, the interface being evaluated, etc. The resulting
MOEs may be either logically-based, empirically-based, observationallv-based
or subjectively-based variables depending on the selected testing method, a
point that will be returned to later in the chapter. The only restrictions
are that each MOE must be measurable and that it provides the required
information. Or to put it differently, the MOE must be correlated (positively
or negatively) with the overall utility of the expert system under develop-

ment.

Table 1-1 presents the hierarchy of subjective MOEs used in the case
study presented later in this chapter. [Note: Chapter 2 presents a hierarchy
of MOEs that (1) is more directed toward supporting the selection of test and
evaluation wmethods, and (2) gives more emphasis to testing and evaluating the

knowledge base.| The MOE hierarchy presented here was developed by Adelman
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and Donnell (1986) in order to evaluate the adequacy of five different
decision support system prototypes, including three expert systems, developed
to support U.S. Air Force tactical decision making. We use the term “subje-
ctive MOEs” because & questionnaire was used to assess the prototypes’
performance on the MOEs. Consistent with research by Adelman (1982), Huber
(1986), Shycon (1977) and others indicating that evaluators must monitor the
compatibility of decision technology with the characteristics and needs of the
organization, as well as the user, the hierarchy of MOEs is organized to

measure the three interfaces represented pictorially in Figure 1-2.

DECISION-MAKING ORGANIZATION
42

1 %

EXPERT
USER SYSTEM

|

ENVIRONMENT | THREE INTERFACES TO BE EVALUATED

Figure 1-2: The Three Interfaces to Monitor and Evaluate when Developing Expert Systems

The first interface is between the expert system and the user (ES/U).
Here the issue is the extent to which characteristics of the system facilitate
or hinder its usability. The second interface is between the user (and expert
system) and the larger decision-making organization (U/DMO) of which both are
a part. Here the issue is to what extent the system facilitates the decision-
making process of the organization. The third interface is between the
decision-making organization and the environment (DMO/ENV). Here the issue is
whether or not the expert system improves the quality of the organization's

decision making and, in turn, the organization’'s overall performance.

As can be seen, the MOEs presented in Table 1-1 are organized into a

hierarchy such that the three uppermost levels represent the three interfaces
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in Figure 1-2. The topmost level of the hierarchy represents the expert
system’s overall utility or value to the decision maker and organization for
whom it is being built. Each of the three uppermost levels of MOE categories
{s subdivided further until it is easy to identify distinctly measurable MOEs.
By assuming that each terminal node in the hierarchy could be translated into
an MOE, the task of evaluating an expert system is translated into one of
"scoring and weighting."” That Is, one first tests the expert system on each
of the bottom-level nodes of the evaluation hierarchy in order to obtain the
system's scores on the MOEs. By then "weighting" these "scores™ by the
relative importance of the MOEs and MOE categories moving up the hierarchy,
one obtains an explicit, retraceable proces-. for evaluating the overall value,

and relative strengths and weaknesses, of the expert system.

The MOEs in Table 1-1 will be considered in more detail in the case
study. For now, it is important to make three points. First, the specific
MOE(s) one selects for testing and subsequently evaluating one's expert
systems should be determined from a decision-making perspective. What
information is needed? Who needs it? What stage is the expert system
development process in? In addition, one needs to consider how these ques-
tions, as well as potentially limiting factors (e.g., funds, time, personnel,
etc.), affect the selection of testing methods. Remember, the selection of a
particular method Is a decision in and of itself, for methods differ on
various dimensions (or attributes), such as the generalizability of their data
to real-world settings, their costs, the amount of control the evaluator has
in implementing them, etc. Testers and evaluators need to systematically
consider the technical tradeoffs, limiting factors, and decision-making

perspective when selecting test and evaluation methods.

Second, an eclectic approach is required to effectively test and
evaluate expert systems. As Riedel and Pitz (1986) point out, many people
erroneously assume that objective, empirical measurement is the most valid
and, therefore, preferred type of data to collect. However, the preference
for a particular type of data depends on the relative importance of the MOE
being measured by that data. If the system's performance in solving test
cases is the most important MOE, then objective empirical data will be the

most important type of data to collect. However, if the user’s opinion of the
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expert system is the most important MOE, which it often is for systems
designed to assist experts, then subjective data will be the most important
type of data to collect. Moreover, as we pointed cut earlier, aggregation of
all the test data to make an overall evaluation of the expert system is

inherently a subjective judgment.

It must be remembered that the expert system can be tested on many
different kinds of MOEs. Different testing methods and, thus, types of data,
are appropriate for different MOEs. For example, the methods used to test the
logical consistency of the knowledge base are different from those used to
test the user’s performance with the expert system or how well the software is
written or what the users think of the reasoning trace. The three-phased
approach presented herein represents the kind of eclectic approach required to
comprehensively test and evaluate expert systems. The goal of this book is to
overview a range of subjective, technical, and empirical methods for testing

an expert system on MOEs important to the sponsoring team.

Third, the hierarchy of MOEs presented in Table 1-1, when combined with
relative importance weights, represents an application of Multiattribute
Utility Assessment (MAUA). MAUA, as well as other subjective evaluation
methods, will be considered in detail in this book. What is important to note
here is that these methods can be used to evaluate the implications of the
different tests from the sponsoring team’s perspective. In doing so, it is
the tester's job to test the expert system on each of the bottom-level MOEs in
the hierarchy, and to indicate their relative importance from a technical
perspective. However, it is the job of the sponsoring team (and users) to
assign the relative importance weights to the MOE categories; for example, how
important is the logical consistency of the knowledge base versus its func-
tional completeness versus its predictive accuracy versus its integration with
existing databases versus the user interface versus the system’'s response time
versus the user’'s/organization’s performance, etc. Both the tester and
sponsoring team may be involved in assigning the degree of importance to
different levels of performance within any given MOE category. The evaluator
must work with members of the sponsoring team and users to make these "trade-

off judgments” and, more generally, develop an explicit framework for relating
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the multitude of specific tests to an overall evaluation of the system's value

to the organization.
THE CASE STUDY

Over the twenty-four-month period from September, 1981, to September,
1983, PAR Technology Corporation was the prime contractor to the Rome Air
Development Center (RADC) on a contract designed to develop five decision
support system (DSS) prototypes for supporting U.S. Air Force (USAF) tactical
decision making. Four tasks were performed on this project. Task I was a
detailed study of the various activities, and their functions, performed in
USAF tactical decision making. The study was performed with a view toward
defining potential aliding situations in which the technologies of Artificial
Intelligence, Decision Analysis, and Operations Research might be applied to
aid decision making. In Task II, 28 prototypes were proposed for development.
The proposals were subjected to a two-phase utility analysis and to a cost-
benefit analysis in order to identify the five prototypes that would be
developed on the project. These five DSS prototypes were developed by PAR and
its subcontractors (Decisions and Designs, Inc. and Systems Control Technol-
ogy, Inc.) in Task III, with different companies building different prototypes
on the basis of the match between the technical requirements of the prototypes
and the technical skills of company personmel. All five protctypes were
evaluated in Task IV by a test and evaluation team led by the first author.

This section overviews the three-phased (i.e., technical, empirical, and
subjective) evaluation of a DSS prototype developed by PAR called DART, which
is an expert system (see Barth et al., 1983) to assist in activity node
identification. The activity node identification process addressed by DART is
extremely difficult to perform because of the varying nature of the nodes of
interest and the tremendous volume of available relevant data. Because of
limited time and potential information overload, experience has become an
increasingly important factor in the activity node identification process.
There are, however, few analysts with the necessary activity node identifica-
tion experience. An expert system DSS prototype represented a means of
capturing activity node identification expertise, and making it available teo

inexperienced analysts. The DART prototype was to contain enough expert
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knowledge to identify (with a degree of certainty) thirteen different types of
activity nodes. More importantly, the DART prototype had to be capable of
effectively communicating the rationale for the identification, for it was to

support the analyst’s decision-making process, not replace it.

The results for each of the three evaluation phases are now considered,
in turn. It is important to emphasize three general points here at the outset
of the overview. First, there were limited funds and time to perform the
tests and evaluations. All test and evaluation activities from initial
planniqg, to conducting the tests and performing the analysis, and to docu-
menting the results, had to be conducted for approximately 10t of the pro-
ject’s total cost. Moreover, the actual testing of all five prototypes had to
be conducted within a seven-month period. Finally, the prototypes were tested
sequentially, consistent with the participating contractors' development
schedule. For example, DART was the second prototype developed and tested; it

was tested in the second month of the testing period.

Second, consistent with the perspective of integrating test and evalua-
tion results into development, each prototype was tested twice. The first
test was with engineers at RADC who were novices in the prototype’s domain
area, but who had at least a college degree emphasizing computer science or
engineering. The second test was with domain experts whe represented poten-
tial users of the fully developed system. There were always at least two
weeks between the two tests to provide the development team with some time to
enhance the prototype based on the feedback obtained in the first test

session.

And, third, the overall purpose of the evaluation of DART and the other
four prototypes developed on the contract was to determine which ones showed
the greatest potential value to the Air Force and, therefore, should go on to
further development. Consequently, efforts were made to standardize the
evaluations of the five prototypes as much as possible. This fact, plus time,
money, and scheduling constraints for the evaluations, resulted in the
decision to emphasize the subjective and empirical evaluation phases over the

technical one.
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In particular, each prototype was subjected to an experiment to test
whether the aid significantly improved users’ performance. Second, the table
of subjective MOEs presented in Table 1-1 was used to obtain participants’
opinions of the prototypes' strengths and weaknesses. Lastly, each test and
evaluation session concluded with a round-table meeting between sponsoring
team and the domain experts who evaluated the prototype in order to further
help the sponsors assess whether the prototype was a good enough option to
warrant further funding. This last point clearly illustrates that the test
and evaluation team saw their overriding purpose to be providing the sponsors
with the stimuli necessary to test the hypothesis that the prototype would (or
would not) improve organizational effectiveness and, consistent with the SHOR

paradigm, to select the appropriate option(s) for proceeding in the future.

The following overview is based on Adelman and Donnell (1986); more

specific details can be found in Adelman and Gates (1983).
Technical Evaluation

Th§ technical evaluation of the DART expert system prototype took place
at PAR’s corporate headquarters in New Hartford, New York, in late January,
1983. The first issue, which was actually considered early in the development
process (Rockmore et al., 1982) was whether artificial intelligence was an
appropriate analytical method to select for the activity node problem. The
answer was an affirmative one. Consistent with the SHOR paradigm, the user’'s
job is to evaluate and select hypotheses regarding activity nodes. Artificial
intelligence is ideally suited for this requirement.

The technical evaluation focused primarily on the system characteristics
of DART'’s many modules. These modules are represented in Figure 1-3 from a
functional perspective. The most visible portion of the system is the
Executive, which assists the user in managing the aid. The Executive consists
of:

. The Inference Engine,

. The Advice Interpreter,
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. The Model Manager, '

. The Display Manager.

Based upon a selected goal hypothesis (one of the thirteen identifiable
activity nodes), the Inference Engine accesses that portion of the Inference
Network which will analyze the pertinent, available information concerning the
goal. The rules contained in this selected segment of the Inference Network
use the data (or evidence) found in the message and associated degrees of
belief from the Evidence Manager to identify the most likely activity node.
The Advice Interpreter advises the user of the degree of belief for this
identified activity node. Additionally, the user can consult the Advice
Interpreter for the evidence used in reaching this decision. Once advised,
the user can call the graphics display via the Display Manager or call the
Model Manager to update the activity node identification model. The Display
Manager provides the means to display terrain data; the Model Manager places
identified activity nodes on this terrain. The Message File and Driver
provide a time-sequenced list of reports which the analyst can use to corre-
late multiple reports of the same activity node, thereby increasing the .
confidence in the identified activity node.

In brief, the evaluation team concluded that, from a technical perspec-
tive, the DART prototype contained all of the modules necessary for a consul-
tative expert system to support the activity node identification, decision-
making process. The experts who participated in the empirical and subjective
evaluations supported this position, for, although they recommended many
improvements, they neither recommended additional modules nor deletions of
those already developed for the DART prototype. The logical consistency,
functional completeness, and predictive accuracy of the knowledge base were

considered as part of the empirical evaluation with the domain experts.
Empirical Evaluation

The goal of the empirical evaluation phase was to objectively assess
whether DART significantly improved the accuracy of analysts performing the
target identification process. To accomplish this goal, an experiment was

performed. The three independent variables were (1) whether the sanalyst was '
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experienced or not in activity node identification, (2) whether the analyst
performed the activity node identification task with or without DART, and (3)
which of two different activity node identification problems the analvst
performed. The dependent variable was the quality of the analyst’'s solution
to the activity node identification problem.

The test setting for the empirical evaluation was created concurrently
with the performance of the technical evaluation. An isolated room 14 feet by
12 feet was used for the unaided condition. A smaller room with a computer
terminal and DeAnza display, both of which were linked to a VAX 11/780 system,
was used for the aided condition. [Note: Operational versions of DART and
the other DSS prototypes were to be tailored for military microcomputers on
subsequent procurements at the government'’'s discretion.] Both test areas had
1:500,000 and 1:250,000 scale charts of the geographic area of interest used
in the activity node identification problems.

The participant’s task for each of the two problem scenarios was to
identify ground components of opposing forces moving in a specified direction
over the area of interest on the basis of message data. The problems differed
in the number of each of thirteen possible activity node types and the
available message data. In the first problem there were 100 messages; in the
second problem there were 80 messages. Each participant had 1 1/2 hours to
perform each problem regardless of whether he or she worked with or without
DART. The activity nodes identified by each participant were placed on
acetate and overlaid on the large wall map representing the geographic area
for which the problem scenarios were created. Since a correct solution
existed for each scenario, it was possible to determine the number, location,
and type of correctly identified activity nodes. Using this information and
looking at the acetate overlay map, the experts then rated the quality of each
participant’s solution for each scenario on a 0-to-10 scale, where higher
scores meant a better solution. Qualitative ratings were required because all
misclassifications were not equally detrimental; the solution’s quality
depended on an analyst's judgment as to the importance of the type and
location of the misclassifications., Each participant’s solution was coded by

letter to minimize the experts’ ability to identify its author.
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The empirical and subjective evaluations were conducted at PAR's cor-
porate headquarters in New Hartford, New York, over two 4-day periods in
February and March, 1983. The participants for the first session were RADC
personnel who had no activity node identification experience; these four
participants are referred to as nonexperts. The participants for the second
session were U.S. Air Force analysts with considerable activity node iden-
tification experience; these three participants are referred to as experts.
The participants were provided through the cooperation and courtesy of
different Air Force agencies. Although the sample size was small for an
empirical evaluation, it was as large as could be obtained, given prior Air
Force commitments. Larger sample sizes should be used whenever possible to
provide the power necessary for traditional statistical tests of a prototype’s

effectiveness (e.g., see Adelman ot al., 1982).

The primary value of the session with the nonexperts was identification
of the following three necessary modifications to the test conditions and the
DART user interface. First, the nonexperts did not have enough hands-on
training in using DART; consequently, the experts’ schedule was modified to
provide more training. Second, DART was slow and cumbersome to use because it
required the user to update the Model Manager and Display Manager after each
message by sequentially accessing a number of menus; consequently, DART was
modified to give the user the ability to automatically update the Model
Manager and Display Manager after each message, thereby making DART much
faster to use. And third, the message flow in the unaided participants’ task
was found to be unrepresentative of the analyst’s actual environment; conse-
quently, the message flow was modified for the session with the experts so

that it better represented the analyst’s actual environment.

The results of the session with the nonexperts were, however, not
included in the empirical and subjective evaluations of DART because so many
changes were made to the test conditions and DART user interface between
sessions that, prior to the session with the experts, the test and evaluation
team concluded that it was inappropriate to combine the results of the two
sessions. However, it is of importance to note here that the cumulative
effect of the three classes of problems described above resulted in the

nonexperts performing the activity node classification task worse with than
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without DART at a statistically significant (p < .05) level. Integrating the
feedback from the tests with the nonexperts back into the development process

will, as will be shown, significantly improve the DART prototype.

The schedule for the DAxT evaluation session with the experts proceeded
as described below over the 4-day evaluation period. Monday morning was
dedicated to providing a technical overviaw of DART so that the experts would
understand how DART performe . -:tivity node identification. O.. Mcnday
afternoon and most of Tuesday, the experts received hands-on training in using
DART. This was accomplished by nroviding each expert with two 1 1/2 hout
training sessions on DART. The DART test scenarios were completed by the
experts on Tuesday and Wednesday. Two of the experts worked the first
scenario in the wnaided condition, and one used DART. In contrast, two
experts worked the second scenario using DART and one worked without it. This
arrangement ensured that cach expert had used DART to solve one scenario, and
that there were 3 aided and 3 unaided solutions in total. On Thursday, the
experts rated the quality of the three solutions generated by the experts for
each scenario. The experts’ ratings were based on the number, location, and
type of both correctly and incorrectly identified activity nodzs. The
participants also completed the evaluation questionnaire. and ¢iscussec their
impressions of DART’s strengths and weaknesses with members of PAR’s evalua-

tion team and RADC personnel monitoring the contract.

The experts’ quality ratings of the experts’ solutions, and the condi-
tions under which they were generated, are presented in Table 1-2. The higher
the number, the better the quality rating. Pearson product-moment correla-
tions (r) were calculated to determine the extent of agreement among the three
experts' ratings. Pearson product-nowent correlations can vary from +1.0
(indicating perfect agreement) to -1.0 (indicating periect disagreement); a
value of zero indicates that there is no relationship among the ra.ings. The
Pearson product-moment correlations were computed by combining the ratings for
both scen~rios, thereby creating a sample size of six (instead of three) and,
in turn, greater confidence in the results. The Pearson praduct-moment
correlations among the quality ratings of experts El and E2, El1 and E3, and E2
and E3, were .94, .93, and .97 respectively. All three correlations were

statistically significant at the p < .01 lev:l, thereby indicating that there
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was considerable agreement among the experts’ quality ratings of the solu-

tions.

Table 1-2: The Experts’ Quality Ratings for their Solutions
with and without DART

SCENARIO #1 SCENARIO #2

GoB* E1lE2 |[E3 | Mean } GOB* E1[E2 [E3 | Mean
A(Unaided) | 3} 53] 367 | A{Aided, 6 10
B(Unaided) | 8]8]|8] 80 B(Unaided) | 99|91} 90
C (Aided) 517171 633 | C(Aided) 71818 767

B

*GOB is Ground Order of Battle

The mean quality rating and the sample size for each of the four cells
in the 2 (Aid) X 2 (Scenario) design for the experts’ solutions are presented
in Table 1-3. As can be seen, there are only three observations each in the
Aidad-Scenario 1 and Unaided-Scenario 11 cells. This orcurred because, since
only three experts participated in the evaluation, two celis of the design
could have only one participant if each expert were to (1) perform each
scenario only once and (2) work both with and without the aid. The Aided-
Scenario I and Unaided-Scenario II conditions, and the expert who worked them,
were rancom.y selected by the evaluation team. Table 1-3 shows a sample size
of three observations for these two cells because eacn of the three experts
independently evaluated the one expert’'s solution. The Unaided-Scensario 1 and
Alded-Scenario II cells have a sample size of six obs. —vations because each of
the three experts independently evaluated the two experts’ solutions for these
two cells. Each expert’s rating was used as an independent observation of
each solution, instead of taking the mean of the three experts' ratings for
each solution, to have a sample size that even apprcached the size neccssary

for performing statistical tests,
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Table 1-3: Experts’ Mean Quality Ratings and Sample Size
for the 2 (DSS) X 2 (Scenario) for the Experts' Solutions

SCENARIO{ SCENARIO I x
N=3 N=6 N=9
AIDED
6.33 7.33 7.00
Nub N=3 N=9
UNAIDED
583 9.00 6.89
— NS N=9 N=18
X
6.00 7.89 6.95

A repeated megsures t-test, where the experts were the repea:ed measure,
was used to statistically determine whether, on the average, (1) experts
performed better aided than unaided, and (2) if performance was significantly
better for one scenario than the other. ({Note: An Analysis of Variance was
not used because, due to the small and unequal sample sizes for the cells,
analysis of the Aid X Scenaric interaction was not warranted.] There was no
statistical difference in the mean scores for the aided and unaided condi-
tions; experts performed equally well working with DART as without it. Mean
performance was, however, significantly better for Scenario II than Scenario I
(t = 2.34, df = 4, p < 0.05). This may have been due to practice effects
because Scenario II was performed after Scenario I. This hypothesis is
unlikely, however, for the participants were experts who, of course, had
substantial experience performing substantially more complex scenarios in

operational settings. A more likely explanation is that Scenario II was

easier than Scenario 1.

An additional analysis was performed in an effort to better understand
why there was no difference in the performance of experts working with and
without DART. This aspect of the empirical demonstration illustrates but one
of a number of different methods that will be considered later in this book

for testing the predictive accuracy of an expert system’'s knowledge base. In
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particular, the evaluation team counted the number of mistakes the experts
made for the thirteen different activity nodes in the two scenarios, both with
and without DART. Although no statistical tests were performed because of the
small size for each node, examination of the mean scores suggested that, when
aided, the experts were better in identifying certain activity nodes, and
worse in identifying others. This suggests that (1) DART's rule-base for
identifying certain activity nodes needed improvement, and (2) that such
improvement would result in experts performing the test scenarios better with
DART than without it.

Subjective Evaluation

The subjective evaluation of DART was composed of the experts’ answers
to two questivnnaires. The first questionnaire was of a short-answer format
with the questions designed to assess the expert system’s performance on the
subjective MOEs presented in Table 1-1. The second questionnaire was of an
open-ended format which gave the experts an opportunity to indicate, without
any prompting from the evaluation team, what they perceived to be the
strengths and weaknesses of the DART prototype and recommend improvements to
it.

We will present only the results obtained from the first questionnaire
for two reasons. First, there was general agreement between the answers to
the two questionnaires; consequently, it is unnecessary to present the results
to both of them here. Second, the short-answer questionnaire had been
standardized so that, except for substantive changes unique to DART, the same
questionnaire could be used to assess participants’ Impressions of the
strengths and weaknesses of each of the five prototypes developed on the
contract; consequently, the short-answer questionnaire represented the first
step in developing an empirically-based questionnaire that could be used by
other people evaluating decision support technology. This focus, as well as
the detailed analysis of the questionnaire for all five of the prototypes

developed on the contract, can be found in Adelman, Rook, and Lehner (1985).

Before describing the questionnaire, we will briefly describe the MOE

hierarchy to facilitate readers’ consideration of how to develop ones ap-
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propriate to their development projects. In particular, the MOE categories
were designed to be as general as possible so that the same MOEs could be used
to evaluate each prototype. To accomplish this, Adelman and Donnell (1986)
refined and expanded the hierarchy of evaluation criteria initially developed
by Sage and White (1980) to be compatible with the three-interface perspective
presented in the previous section of this chapter. In doing so, they used as
many of the criteria as possible that were used earlier in the contract when
deciding which prototypes to develop in the first place. Other MOEs could
{and would), of course, be used in an evaluation, depending on the character-
istics of the expert system and the concerns of members of the sponsoring and

development teams.

MOEs assessing the quality of the Expert System/User interface were
divided into two major groups of criteria: those that assessed the match
between the expert system and potential user’s background, workstyle, and
operational needs; and those that assessed the adequacy of the expert system's
characteristics. This latter group was composed of general expert system
characteristics—such as its ease-of-use and response time—and specific
characteristics—such as the adequacy of the expert system’s knowledge base,

graphic displays, hard-copy capabilities, and text.

MOEs assessing the quality of the User-Expert System/Decision Making
Organization interface were divided into two major groups of criteria: those
assessing the expert system’s efficlency from an organizational perspective,
and those assessing the system’s fit into the organization. Efficiency
criteria included the amount of time it took to use the expert system to
accomplish the task it was supporting (this is distinctly different from its
response time), data management and set-up time requirements, and, pertinent
to the present application, the system’s perceived reliability and suppor-
tability under battle conditions, Criteria explicitly focusing on the expert
system’'s potential effect on organizational procedures, other people’s work,
the flow of information, and its value in performing other tasks were used to
asscss the system’s fit into the organization for which it was being devel-

oped,
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MOEs assessing the gquality of the Decision Making Organization/Environ-
ment interface were grouped into three major criteria: the perceived quality
of decisions obtained using the expert system; the extent to which the expert
system's technical approach matched the technical requirements of the task;
and the extent to which the system improved the quality of the decision-making
process. This last group of criteria was quite broad, ranging from the extent
to which the expert system helped the user survey a wide range of alternatives
and objectives, to the degree to which the system increased or decreased the

user’'s confidence in the decision.

We now turn to describing the short-answer questionnaire. Specifically,
the questionnaire had 121 questions. Most of the questions assessed the
bottom-level MOEs in Table 1-1; however, 6 questions directly assessed overall
utility (node 0.0 in Table 1-1), 2 questions directly assessed decision
process quality (node 3.3 in Table 1-1), and 3 questions each assessed the
quality of the training sessions and the test scenarios (neither of which are
MOEs). All questions required the participant to respond on a eleven-point
scale from O (very strongly disagree) to 10 (very strongly agree), with 5

being "neither disagree nor agree."

There were two or more questicns for each MOE criterion in an effort to
achieve greater confidence in the criterion scores. The number in the
parentheses to the right of each bottom-level MOE in Table 1-1 indicates the
number of questions assessing that criterion. The actual number depended on
the availability of previously written questions assessing the criterion
(e.g., from Sage and White, 1980), the ease in writing "different-sounding"
questions for the criterion, and its depth in the hierarchy.

Half the questions for each criterion were presented in each half of the
questionnaire to eliminate sequence-ordering effects. In most cases, a high
score indicated good performance, but, typically for one question measuring
each criterion, a low score indicated good performance in an effort to ensure
that the participants paid careful attention to the questions. A prototype’s
score on a bottom-level criterion was the mean score of the participants’
responses to the questions assessing it. Values for criteria moving up the

hierarchy were the mean score for the criteria below it.
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It is important to make two technical notes at this point. First, by
averaging lower-level criterion scores to obtain upper-level criterion scores,
one is giving each MOE criterion equal weight in the hierarchy. Although it
was quite possible that the participating domain experts may have thought that
certain bottom-level criteria were more important than others, members of the
evaluation team thought it inappropriate to have the (DART) experts differen-
tially weight these criteria at the time of the evaluation because we wanted
to use the same weights for evaluating all five prototypes in order to provide
a common evaluation baseline. And, since the hierarchy of MOEs in Table 1-1
was substantially larger and in many ways different from the MOEs used in Task
IT of the project to select the prototypes for development, the evaluation
team considered it inappropriate to obtain relative importance weights from
the sponsoring team prior to (or during) testing and evaluation for fear that
certain developers might consider their prototypes adversely affected. It is
important to note here that subsequent research published by Adelman, Rook,
and Lehner (1985) showed that, in general, the participating RADC engineers
and USAF domain experts differentially weighted the importance of the criteria
when assessing the overall utility of the prototypes.

Second, there is an alternative approach to obtaining the scores on the
upper-level criteria. Specifically, one could have taken the average of the
scores to all the questions assessing each upper-level criterion. For
example, to obtain a score for criterion 1.2, one could have averaged the
scores for all the questions assessing criteria 1.2.1 and 1.2.2 instead of
just averaging the mean scores for criteria 1.2.1 and 1.2.2 as we did. The
alternative approach would have given greater weight to criterion 1.2.2 [
because there were more questions for criterion 1.2.2 than for 1.2.1. Again,
because we did not want to differentially weight the MOE criteria, we rejected

this approach. /

On the basis of the six questions directly asking about its utility,
DART received a mean score of 8.22 on the 0-to-10-point scale. On the basis
of the evaluation hierarchy, DART received a mean overall utility score (node
0.0) of 7.36. The Expert System/User interface received the highest mean

score (7.8l) of the three interfaces. The User-Expert System/Organization
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interface (7.17) and Organization/Environment interface (7.09) received

comparable scores.

The experts’ subjective evaluation scores for all of the criteria in the
MOE hierarchy are presented in Table 1-4. From the perspective of the quality
of DART's knowledge base, it is important to note that, relatively speaking.
the experts gave low scores to the expert judgments stored in the system (noce
1.2.2.3 = 6.84), DART's technical soundness (node 3.2 = 6.52), and the
framework for incorporating judgments (node 3.3.1 = 6.83). Although these
scores are still good, they are consistent with the results of prototype'’'s

empirical evaluation, which was that DART's knowledge base still needed work.

CHAPTER SUMMARY

The purpose of this chapter was to present a general framework and
approach for testing and evaluating expert systems, and to show how they were
applied in a single case study. The framework provides a paradigm for
considering decision making and, hence, expert systems, within the broader
organizational, problem-solving context within which both exist. The approach
is multi-faceted in that it has three phases: a technical phase for "looking
inside the black box;" an empirical phase for rigorously assessing the expert
system’s impact on performance; and a subjective phase for obtaining users’
opinions regarding the system's strengths and weaknesses. Finally, the case
study presented the procedures for, and results of, implementing the general
framework and three-phase approach for an Air Force expert system prototype to

support opposing force activity node identification.

This chapter has been introductory in nature, for we have tried to
emphasize a general perspective that one should keep in mind when testing and
evaluating expert systems. Remember, test and evaluation methods are tools
that can be used to provide sponsoring and development team members with the
feedback they need to improve the judgments and decisions inherent in system
development. For that reason, test and evaluation represents a control
mechanism that keeps a requirements-driven, expert system development proces:

on track.
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It must be remembered that the expert system can be tested on many
different kinds of MOEs. Different testing methods and, thus, types of data,
are appropriate for different MOEs. The specific MOEs one selects for testing
and subsequently evaluating expert systems, should be determined from a
decision-making perspective. What information is needed? Who needs it? What
stage is the expert system development process in? In addition, one needs to
consider how these questions, as well as potentially limiting factors (e.g.,
funds, time, personnel, etc.) affect the selection of testing methods.
Remember, the selection of particular test and evaluation methods is a

decision in and of itself.

The next chapter overviews subjective, technical, and empirical test and
evaluation methods. Prior to doing so, however, we overview the expert system
development process in order to better indicate the appropriateness of
different test and evaluation methods during development. After overviewing
the different kinds of methods, we present a (1) hierarchy of MOEs for
capturing subjective, technical, and empirical data, and (2) general evalua-
tion approach for integrating the tests on these MOEs into an overall assess-

ment of the utility of the expert system under development.
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CHAFTER 2:

LAYING THE FOUNDATION: TEST AND EVALUATION CRITERIA,
TRE EXPERT SYSTEM DEVELOFMENT CYCLE, AND AN OVERVIEW OF SUBJECTIVE,
TECHNICAL, AND EMPIRICAL TEST AND EVALUATION METHODS

This chapter builds the foundation upon which the remaining chapters of
this book rest. It has three principal sections. The first section overviews
test and evaluation criteria identified by Adelman and Ulvila (in press).
These criteria are organized into a hierarchy that can be used with Multi-
Attribute Utllity Assessment (MAUA) procedures-—one of the subjective test and
evaluation methods—to assess how well an expert system is meeting the
requirements of users and sponsors. As was emphasized in the last chapter,
the specific criteria one would use in one’s tests and evaluations would
depend on the specific requirements of one’s users and sponsors. However, the
hierarchy presented herein contains the wide range of test and evaluation
criteria commonly found in the literature and, therefore, can give one a broad
list of criteria from which to start. 1In Chapter 7, we provide some guidance

for sifting through this list.

The second section of the chapter overviews the expert system develop-
ment approach. Surprisingly, this "approach" takes somewhat different forms
depending upon who is describing it. Nevertheless, it is epitomized by an
iterative, prototyping approach that is distinctly different from the tradi-
tional software development process, although more recent formulations attempt
to integrate requirements analysis and structured design aspects of the
latter. Moreover, test and evaluation are an inherent part of this iterative
development cycle. To quote Harrison (1989, p. 311), "Note that incremental
development, refinement, reintegration and so on all imply that evaluation is

continuous and inseparable from development.®

Evaluation is continuous and inseparable from development because
judgment and decision making are inherent parts of the process. Formal test
and evaluation methods have to be capable of improving these judgments and
decisions and, thereby, the development process, throughout its iterative life
cycle. This requires the application of different test and evaluation

methods, appropriately matched to the information and decision needs of
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different members of the sponsoring and development teams, throughout develop-

ment.

The third section overviews the many different subjective, technical,
and empirical test and evaluation methods. Other chapters in the book will
describe these methods in more detail. Our purpose here is simply to intro-
duce the reader to these methods. Try to keep the broad evaluation perspec-
tive provided by the SHOR paradigm in mind when overviewing these methods.
Remember, at the broadest level, the evaluator’s job is to help members of the
sponsoring team decide whether development of an expert system is an effective
option for dealing with hypotheses regarding the current and/or future problem
environment with which the organization will be dealing and, if so, the

general requirements that the expert system will have to satisfy.

Once the development process is underway, the evaluator’s job is to
systematically gather, filter, and aggregate data (i.e., stimuli) about the
expert system in order to test the hypothesis. 1If there is a problem or if it
is not clear what action to take, then options need to be generated, eval-
uated, and selected for correcting the situation so that the development
process can be kept on track. In short, the application of formal test and
evaluation methods helps members of the sponsoring and development teams
monitor the perceived utility of the expert system under development and take

corrective action to increase the probability of its use and effectiveness.

All three classes of test and evaluation methods are applicable during a
formal test and evaluation of an expert system prototype by an outside group,
as was shown in Chapter 1. In addition, however, specific methods are more or
less applicable at other times in the development cycle. In particular,
subjective evaluation methods are applicable early in the cycle because they
represent an explicit means for defining the judgments of members of the
sponsoring team and potential users of the system. For example, Rockmore et
al., (1982) used MAUA, and a MAUA-based cost-benefit analysis, to select among
various types of DSS technology, including expert systems, for subsequent
development. Slagle and Wick (1988) used a subjective method analogous to

MAUA to evaluate candidate expert system application domains. And Bahill et
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al. (1988) used MAUA to address the valuative and technical judgments inherent

in selecting expert system shells.

Technical test and evaluation methods are also applicable during design
and development. For example, as part of the knowledge elicitation and
representation process, one should routinely assess the adequacy and accuracy
of the knowledge base. This can be accomplished by using (1) static testing
to help assess the knowledge base’s logical consistency and completeness, and
(2) experts, both those participating in development and those acting as
evaluators, to help assess the knowledge base’'s functional completeness and
predictive accuracy. Ideally, the test and evaluation team will also have
access to "ground truth" data for assessing predictive accurazy, as illus-
trated in the DART evaluation. In addition, traditional software test and
verification methods can be used to help assess the "service" versus "compete-
ncy" requirements of the expert system. These methods have considerable
applicability (a) prior to programming code for verifying requirements
analysis documentation and functional models of the software), and (b) once
the development process is well underway, during system packaging and trans-

fer.

In contrast to technical test and evaluation procedures, which focus on
how well the system was developed, empirical test and evaluation methods focus
on how well decision makers can perform their task(s) with (versus without)
the system. From an iterative, prototyping perspective, it is anticipated
that experiments will be conducted throughout development as a means of
objectively measuring the performance of the expert system and testing
hypotheses for improving it. After transferring the expert system to the test
organization, experiments, quasi-experiments, and case studies can be used to
evaluate performance in the actual or simulated organizational setting.
Remember, the expert system may be addressing only part of a much larger
organizational decision. Even if the technical evaluation of the knowledge
base shows that it has perfect predictive accuracy, the expert system's
contribution still may not ensure better decision making within the larger

organizational setting.
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TEST AND EVALUATION CRITERIA

Table 2-1 presents a hierarchy of test and evaluation criteria. As
will be discussed later in Chapter 3, this hierarchy can be used in conjunc-
tion with MAUA scoring and weighting procedures to evaluate the overall
utility of an expert system to users and sponsors. Since the goal of develop-
ers and sponsors of expert systems (or for that matter, any type of software)
is the creation of high-utility technology, the ultimate goal of test and
evaluation is to determine (and facilitate) the extent to which this goal has

been achieved.

The hierarchy in Table 2-1 has five branches. The first presents
criteria for assessing the adequacy of the knowledge base or, as Rushby (1988,
P. 75) has called them, the "competency requirements" of an expert system.
Specifically, Table 2-1 lists different criteria for assessing logical
consistency and completeness, functional completeness, and accuracy (and
adequacy). Chapter 4 will focus on technical evaluation methods for measuring
these criteria. In particular, we will overview the use of static testing
methods for assessing the logical consistency and completeness of the knowi-
edge base, and the use of domain experts, in conjunction with empirical
evaluation concepts and methods, for assessing the functional completeness and

predictive accuracy of the knowledge base.

The second branch is the correctness of the inference engine. Sponsors
and users need to know that the inference engine has no errors in how it
accesses the knowledge base and in how it propagates rules and probabilities
(or other quantitative representations of uncertainties) in reaching conclu-
sions. Testers should not assume that the inference engine has no errors,

Some expert system shells do not provide test data with their documentation.

The third branch addresses conventional software requirements, referred
to as "service requirements' by Rushby (1988, p. 75) within the context of
expert systems. Conventional software test and verification criteria are
important for expert systems too, particularly if the expert system has to be
embedded in, or interfaced with, more conventional software modules. Service

requirements include information about computer system design and portability
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(i.e., transferability to other hardware and software environments), computer
usage (e.g., set-up time, run time, space requirements, etc.), system integra-

tion, operator skill requirements, and documentation.

The fourth branch in Table 2-1 contains performance criteria, - aich are
decomposed into criteria based onr ground truth (or experts’ ratings of
decision quality), and the judgmenvs of users. Both "ground truth" and
"judgment" categories focus on the quality and speed aspectr of performance.
As Cats-Baril and Huber (1987) have shown, users’ judgments of system perfor-
mance do not always agree with more cbjective data. Consequently, although it
is sulbstantially more work, the use of ground truth data is urged when
assessing performance. Moreover, we recommend here (as we will throughout the
discussion of empirical evaluation methods) that experiments with aided and
unaided corditions be relied on prior to transferring the system to its
operational environment in order to rigorously assess performance with and
4ithout the system. Field experiments, quasi-experiments, and case studies
should be relied on after transferring the expert system to its operational

(or operational teust) environment.

The usability branch is composed of criteria based on evaluators’
observation of participants working with the system and participants’ judg-
ments of it. In conjunction with observation methods, users’ kev strokes can
be recorded in an effort to better understand the extent to which the par-
ticipants actually use the expert system during the problem-solving task, the
manner in which they use it within the context of the more familiar procedures
typically found in their job setting, and the specific features of the system
they use most frequently. In addition, questionnaires analogous to the one
used in the DART test and evaluation can be used to obtain users’ opinions
regarding their confidence in the expert system’s recommendations, its ease of
use, the acceptability uf the person/machine interaction process, its scope of
application, the adequacy of the system’'s explanations for its recommenda-
tions, the system’s organizational impact, and specific input-output con-

siderations.

The above criteria can be used to assess the adequacy of an expert system

from the urars’ (and sponsors’) perspective. To do so, one must test and, in
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turn, score the expert system on each criterion that is considered important
(i.e., given a nonzero, relative weight) by the users. Thus, each criterion
represents a reference point that can be used to assess the system's progress
on that criterion throughout development. For example. one would like to see
a smaller number of redundant rules, a higher percentage of accurate predic-
tions, better overall performance by the user, more favorable opinions about
the interface, etc., as the system matures. Graphs can be developed to track
trends on each criterion over time and, thereby, facilitate management of the

test and evalustion process.

As we mentioned in Chapter 1, we will use the term “test" to refer to
the process of measuring the expert system’s performance against evaluation
criteria, such as those listed in Table 2-1. The type of testing method to be
used will depend on the criterion against which the expert system is being
tested. For example, one would use (1) methods implementing the rules of
logic to test the logical consistency of the rules in the knowledge base; (2)
empirical data collection methods to test the predictive accuracy of the
knowledge base against the judgmental accuracy of expe.ts or ground-truth
measures of accuracy; (3) observation methods to record the features of the
expert system that users routinely use when solving test cases; and (4)
subjective methods, such as questionnalres, to assess users' opinions of the
system’'s strengths and weakness. That is why a multi-faceted approach is

necessary to comprehensively test and evaluate expert systems.

Central to the concept of evaluation is the concept of the utility or
importance of the test results to the sponsoring team. For example, if the
sponsoring team’s primary requirements were that the expert system's (a)
knowledge base be logically consistent, (b) functionally complete for the
domair of interest, and (c) highly accurate in its predictions, then they
probably could care less if its user interface was easy to use. As long as
the expert system tested high on its primary requirements, then it would be
evaluated as performing well. As this example illustrates, the process of
aggregating all the different tests in order to reach an overall conclusion
about the expert system is inherent in the term "evaluation." One of the very
nice things about MAUA as a test and evaluation method is that it provides

explicit, defensible procedures for converting the test results on many
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different criteria into one common scale; that is, it provides a method for

converting all the "apples and oranges" into a single overall evaluation.

We will briefly overview in Chapter 3 how MAUA procedures can be used tc
evaluate an expert system on the criteria shown in Table 2-1. We want to
close this first section, however, by again emphasizing that evaluation is
inherently a subjective process. Relative importance weights represent
personal judgments. There is no mechanical procedure that can replace this
fact or the use of other decision rules. Moreover, these judgments are
appropriately the province of the decision makers, or their representatives,
who are sponsoring the development of the expert system, &nd not the testers.
For it is the sponsors of the development effort that have to make the final
decision (i.e., evaluation) as to whether or not the expert system will
fulfill their needs. Sucl. a perspective is, of course, quite consistent with
the SHOR paradigm.

THE EXPERT SYSTEM DEVELOPMENT APPROACH

Perhaps the best way to begin a description of the expert system
development approach is to first present its counterpart, the "conventional"
system design approach. As Andriole (1989) points out, there are various
representations of the conventional approach. The one by Hice et al. (1978),
shown in Figure 2-1, is an excellent example because it emphasizes the
comprehensive, structured, and sequential nature of the conventional approach.
Its strength is its procedural comprehensiveness. Its weakness, however, is
its failure to extensively involve the user throughout the design process, and
its relative inflexibility, which is best illustrated by the lack of feedback
loops between the seven steps (and particularly the first two) in Figure 2-1.
It is important to note that this presumed weakness is not always a weakness;
it depends on the nature of the problem and tasks for which the system is
being developed. The conventional approach can be very effectively applied
when the problem and tasks are easily identified, defined, and structured. It
is only when such clarity is elusive that other approaches need to be consid-

ered by developers.
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Clarity of problem and task definition and, most importantly, structure,
is typically elusive when starting an expert system development effort. The
reason is that expert knowledge and reasoning represents the essential task
structure of an expert system, and this is difficult to define and understand
at the start of the development effort. To quote Harmon et al. (1988), "It's
not that experts will not explain what they do, it’s that they can’t.
Knowledge engineers must work patiently through a discovery process with human
experts to develop and then enhance the system. No neat phases result in
products that will not be reconsidered in subsequent phases. The original
rules the knowledge engineers develop may later be rewritten entirely or
dropped, as the experts and knowledge engineers gradually refine their
understanding of the knowledge that must gc into the knowledge base." To
quote Cholawsky (1988, p. 42), "The conventional wisdom about this process is
that expert systems development is necessarily an experimental process." It
is one that emphasizes iteration, test and evaluation, and subsequent refine-

ment.

For the above reasons, expert system developers and theoreticians have
emphasized the application of prototyping methods with corresponding changes
in the development process., The purpose of prototyping is to quickly develop
a working model of the expert system and get the expert’'s and user's reaction
to it in order to find out if the development process is on track. To quote
Cholawsky (1988, p. 42), "Application is quickly followed by some initial
prototyping effort. The prototype often serves as a combined feasibility
study, design document, and functional specification effort. As the problem
area becomes better understood, more involved prototype efforts are undertaken
with more complex implementation, testing, and evaluation. The development
team iteratively enhances each prototype until an operational system evolves,
In the final development phase, the team is challenged to maintain and enhance
end results of the prototyping efforts, transforming the mature prototype into

an operational system."

Figure 2-2 presents Cholawsky's (1988, p. 44) representation of the
"traditional expert system development methodology."
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Figure 2-2: Cholawsky's (1988) Representation
of the Traditional Expert System Development Methodology

Figure 2-3 presents Harmon et al.’s (1988) representation of the approach. As
can be seen, Harmon et al. emphasize the constant interaction with the experts
and users that is inherent in the prototyping approach. Constant interaction
with users during prototyping is just as important as constant interaction
with experts for two reasons. First, "users don’t know what they want or
need, but they do know what they like." And, second, "it is a lot easier to
answer the question 'How do you like X?’ than to answer the question ‘How
would you like X?'" (Hurst et al., 1983, p. 128). These reasons hold even
when the participating expert is the designated user of the expert system.
Consequently, in contrast to the conventional development approach, proto-
typing greatly expands the users’ involvement in the development process by
putting them in the explicit role of evaluating actual working representations
of the expert system, and indicating how they should be modified, throughout

development.
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Figure 2-3: Harmon et al.’s (1988) Representation
of the Traditional Expert System Development Methodology

In the past, expert system developers have been prone to taking a "we
versus they" attitude when comparing their system development approach to the
more conventional one. However, as we mentioned in Chapter 1, that is
beginning to change because, for all its strengths, expert system development
efforts emphasizing a totally "experimental" prototyping approach have not
been as successful as we would like to believe. There have been too many
failures because expert system developers have failed to consider the require-
ments issues of critical concern to sponsors. To quote Cholawsky (1988, p.
44), "In general, prototypes ignore both deployment issues (such as cost-
benefit analysis, scaling up to operational size, and handling real-world
data) and transition issues. ... The development team argues that business
issues should be temporarily tabled; if the problem cannot be solved techni-
cally, it does not matter if it is justified from a business sense. This

argument has a fatal flaw. Even if the life underwriting decisions of the
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expert system exactly match the underwriter, the system will not be built if
it lacks an adequate payback.” Furthermore, Constantine and Ulvila (in press)
have found a number of cases where the development cycle was to "prototype

forever," never reaching an operational system.

As we mentioned earlier, a more requirements-driven development process
is evolving. This process emphasizes the importance of prototype planning
that explicitly identifies objectives and evaluation criteria for determining
prototype success prior to development as a means of keeping development on
track. In addition, it emphasizes conventional software design activities,
not just knowledge engineering. These design activities provide a structured
approach for addressing, during prototype development, many of the deployment
and transition issues that have been a problem for successful prototype

implementation.

Figure 2-4 presents Cholawsky’s (1988, p. 47) "new approach to expert
system development." Her approach divides protdtyping activities into two
groups. The first group emphasizes prototype planning. It includes specify-
ing the objectives and secondary issues (i.e., subproblems) for the prototype,
the evaluation criteria for "determin[ing] prototype success," and a develop-
ment schedule with milestones and deliverables. The second group emphasizes
prototype development. It includes a predesign stage for understanding the
domain vocabulary, a logical architectural design stage for analyzing the
reasoning and representation paradigms used in the domain, a physical ar-
chitectural design stage for considering hardware and software issues, an
implementation stage for programming the knowledge engineered during the
logical architectural design stage, and an evaluation stage for explicitly
testing the prototype against the evaluation criteria specified during
planning. Iteration is assumed throughout the various stages, although it is
more controlled than in the traditional prototyping approach. Assuming that a
successful prototype is developed, efforts are then directed toward developing

the operational system, and maintaining and enhancing it.
Cholawsky is not alone in proposing an expert system development

approach that moves toward integrating aspects of the more conven:tional syste:

development approach into prototyping. Figure 2-5 presents Weitzel and
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Figure 2-4: Cholawsky's (1988) "New" Approach
to Expert System Development
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Kerschberg’s (1989, p. 599) "knowledge-based system development methodology
flow." Although their approach emphasizes iteration, it also emphasizes
conceptual and detailed design prior to coding, as well as substantial testing
and evaluation. Figure 2-6 preseats Rook and Croghan's (1989, p. 589)
"knowledge acquisition activity matrix." As can be seen, they have tried to
integrate the various knowledge-engineering activities with the steps in the
conventional system development cycle in an effort to move effectively and
efficiently from the laboratory to the operational environment. And Figure
2-7 presents Andriole’s (1989, p. 31) "prototyping design blueprint."
Although his approach emphasizes modeling and iteration, it also emphasizes
aspects of the more conventional system development approach, particularly
requirements analysis, hardware and software selection, and system design,

packaging, transfer, and evaluation.

Figure 2-8 presents Wolfgram et al.’s (1987, p. 17) "stages of expert
system development." This representation is quite similar conceptually to
Cholawsky's (1988). First, Wolfgram et al. also distinguish between prototype
planning and development. Planning issues, such as the specification of goals
(i1.e., objectives and subproblems), evaluation criteria, and explicit require-
ments for guiding development, are part of Identification and Definition, the
first stage in their development approach. Second, prototype development and
construction of the operational version of the expert system are distinctly
different stages of development-—stages 2 and 3, respectively. Moreover,
prototype development in Wolfgram et al's approach incorporates many of the
same requirements and design issues Cholawsky addresses in her approach. All
of the issues are directed toward designing the "structure" for the operation-

al version of the system.

Regardless of the various representations of the expert system develop-
ment approach, test and evaluation is an inherent aspect of {t. 1Ia fact, test
and evaluation activities are assumed; they are simply taken for granted as
part of iterative development. Consider Wolfgram et al. (1987, p. 19), for
example. "Once the prototype is in place, it is a working model, or submodel,
of the planned complete expert system. It is at this stage that, after
careful testing and review, a decision is made whether to continue the project

and construct the complete expert system or abandon the project.” Testing and
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evaluation are the critical activities upon which the fate of the project
rests, yet Wolfgram et al. fail to indicate its presence in their pictorial

representation of the development process.

Figure 2-9 presents a revised version of Wolfgram et al.'s representa-
tion of the expert system development process, but now with testing and
evaluation explicitly added to the process. In particular, we have added test
and evaluation boxes after prototype development (stage 2), integration and
implementation (stage 5), and maintenance (stage 5). Testing and evaluation
obviously occurs at the end of each of these development stages. For example,
in addition to testing and evaluating the prototype, one would obviously test
and evaluate the operational version of the expert system (stage 5); one does
not simply hand it over to the host organization and walk away from it after
so much time and money has been spent in developing it. Similarly, one tests
the effects of any changes that one makes to the system during maintenance for

fear that an enhancement might result in an unanticipated error or problem

All this test and evaluation goes on informally in most expert system
development efforts. 1Indeed, informal test and evaluation is a pervasive
activity in development. Webster’'s dictionary (1966) uses the word "examine"
as part of its definition of both "test" and "evaluate."” As developers, we
are always examining the system. We’re always trying to find things here and

fix problems there in order to improve our product.

The reason we have added the test and evaluation boxes to the development
approach is to formalize that activity. Moreover, good test and evaluation is
not epitomized by the informal examination of the system. It is epitomized by
the use of explicit and appropriate methods for helping members of the
development and sponsoring teams make the numerous judgments and decisions
inherent in expert system development. Remember, test and evaluation repre-
sents the control mechanism for providing the feedback that keeps the develop-
ment effort on trac. This point is clearly illustrated in Andriole’'s (1989)
prototyping design blueprint, Figure 2-7. The ultimate goal of test and
evaluation is to help senior-level decision makers in an organization decide
whether the option of developing and implementing an expert system, elther

singularly or in combination with other actions, is an effective organization-
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al response for dealing with their present or future problem environment.

Once the development process is underway, the application of formal test and
evaluation methods permit one to monitor the perceived utility of the expert
system under development, and take corrective action to increase the probabil-

ity of its use and effectiveness.

At this point the reader may be thinking that emphasizing formal tests
and evaluations will increase development costs. In fact, it might. Formal
testing and evaluation is an expensive process. Although we do not have data
for expert systems, Hetzel (1984) points out that direct testing costs for
major software systems approach 25 percent of the development costs. Direct
testing costs include reviews, program testing, systems testing, acceptance
testing, test planning and design, computer time, and test resources, both
human and material. This is obviously not a trivial investment. To quote
Gould and Lewis (1985, p. 306), "... testing still has a price. It is nowhere
nearly as high as commonly supposed, however, and it is a mistake to imagine
that one can save by not paying this price. ... If it is not done in the

developer’s lab, it will be done in the customer's office."

The failure to systematically test and evaluate a system during its
development oftcn results in "indirect costs,” as Hetzel (p. 174) calls them.
Indirect costs include "rewriting programs, recovery, corrective actlon costs,
rekeying data, failures, analysis meetings, debugging, retesting," etc.
"Indirect testing costs, or the costs of poor testing, are usually at least
twice the direct costs and may be spectacularly higher.” Moreover, indirect
testing costs are substantially more expensive later in development. For
example, empirical research (e.g., Rushby, 1988) indicates that errors due to
faulty requirements are between ten to one hundred times more expensive to fix
if detected during implementation than during requirements analysis. Given
our track record, there is no reason to assume that these estimates are any
different for expert systems. Of course, these costs pale by comparison to
the potential costs of a catastrophic decision or even the costs of a system
that is ignored or unused because of correctable problems that could have been
detected by testing. All of this suggests that formally incorporating test

and evaluation into development is a wise investment.
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SUBJECTIVE, TECHNICAL, AND EMPIRICAL TEST AND EVALUATION METHODS: AN OVERVIEW .

We now overview the various subjective, technical, and empirical test
and evaluation methods. The methods will be discussed only at a general level
here. More detailed discussions and illustrations will be presented in later

chapters.

Subjective Test and Evaluation Methods

The goal of subjective tests and evaluations is to assess the expert
system from the perspective of potential users and sponsors. This is accom-
plished by identifying measures of effectiveness (MOEs) that will provide the
information required to assess the system’s utility. The explicit identifica-
tion of MOEs is particularly important at the beginning of the development
process because they represent (a) reference points for the development team
to use, and (b) criteria for evaluators to monitor in order to assess whether

the development process is on track.

Gaschnig et al. (1983, p. 258) have emphasized the importance of .
developing MOEs early in the expert system development process. "It s
important for system designers to be clear about the nature of their motiva-
tions for building an expert system. The long-range goals must also be
outlined explicitly. Thus stage 1 of a system’s development, the initial
design, should be accompanied by explicit statements of what the measures of
the program’s success will be and how failure or success will be evaluated
[italics theirs]. It is not uncommon for system designers to ignore this
issue at the ottset, since the initial challenges appear so great upon
consideration of the decision-making task that their expert system will have
to undertake. If the evaluation stages and long-range goals are explicitly
stated, however, they will necessarily have an impact on the early design of

the expert system."

Multiattribute Utility Assessment. Riledel and Pitz (1986, p. 986), as
well as others (e.g., Adelman and Donnell, 1986; Andriole, 1989; Keeney and
Raiffa, 1976; Ulvila et al., 1987), have pointed out that multiattribute
utility assessment (MAUA) "... provides a formal structure for conseptualizing .
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MOEs, a mechanism for both decomposing the global MOE into its component
dimensions and for reintegrating them to yield one summary measure of value."
When applying MAUA to the evaluation of expert systems and other types of DSS,
the system is conceptually decomposed into attributes that can be defined well
enough so that one can obtain either subjective or objective measures (MOEs)
of how well the system performs on each attribute. This decomposition
typically proceeds through the creation of a value hierarchy, such that the
global attribute entitled "the overall utility" is decomposed into major
categories of attributes, which are further decomposed, and so forth, until
one is reasonably confident that one can define and obtain precise, reliable,
and valid measures (or scores) of the system on each attribute. Table 2-1

presents the MAUA value hierarchy developed by Adelman and Ulvila (in press).

Reintegration typically occurs within MAUA through the application of
utility functions and relative importance weights. An expert system is
usually evaluated on many different attributes, all of which need to be
defined as precisely as possible. The natural measurement scale for an
attribute depends on the nature of the attribute. For example, the scale for
an attribute could be in objective units (e.g., minutes for time) or subjec-
tive units (e.g., how strongly a subject likes a feature) depending on the
attribute. Nevertheless, a common scale is required to compare scores on one
attribute with scores on another-—that is, "apples with oranges"—-and, by so

doing, obtain an overall score for the system.

A utility scale, which conceptually measures psychological value or
satisfaction, m«ets this requirement. Utility (or value) functions are used
to translate system performance on an attribute into a utility score on that
attribute. Then, relative importance weights (or other forms of decision
rules) are used to assess the relative value of a utility score on one
attribute with the utility score on another and, thereby, obtain an overall
utility score for the system. [This weighting procedure is formally valid if
additivity assumptions are met; see Keeney and Raiffa (1976). An assumption

of additivity is generally a reasonable approximation; see Edwards (1977).]

MAUA was used to provide the subjective evaluation of DART described in

Chapter 1. As you will remember, "decomposition" was illustrated in Table 1-
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1, which presented a multiattributed hierarchy that decomposed the global MOE
(the overall utility of the expert system) into three component dimensions:
the user/expert system, user-system/decision making organization, and or-
ganization/environment interfaces. Each of these three interfaces or branches
in the MAUA hierarchy, were further decomposed into bottom-level attributes
(or MOEs).

"Reintegration" was achieved by a three-step procedure. First, the
experts completed a questionnaire that essentially scored DART on each of the
bottom-level attributes. Second, we assumed a positive linear utility
function for each bottom-level attribute, thereby conceptually converting the
performance score on the attribute into a utility score on that attribute.
And, third, we used equal weights moving up the hierarchy to combine the
(utility) scores for lower-level attributes into more global scores at the
next level of the hierarchy until we obtained an overall score on the global
MOE.

The Dollar-Equivalent Technique. The dollar-equivalent method is a
means for translating all benefits, as well as costs, into dollar values
instead of utilities, as in MAUA. In the dollar-equivalent method, all
benefits are converted into dollar equivalents by “pricing out." Pricing out
is a judgmental technique that is much the same as the procedure for convert-
ing performance scores into utility scores in MAUA. As Huber (1980, p. 83)
points out, the dollar-equivalent method is "... a special case of the more
general ... MAU model technique." Consequently, the appropriateness of the
method depends on the defensibility of the conversions to monetary equiva-
lents. Relatedly, traditional cost-benefit analysis represents all benefits
and costs Iin dollars, and then uses the ratio of benefits to costs as the

basis for decision making.

Decision Tree Analysis. Decision tree analysis is a formal method for
combining uncertainties, which are represented as probabilities, with util-
ities when evaluating alternative decision options. Decision tree analysis
often uses subjective probabilities of scenarios to represent, at a collecti- -
level, the uncertainties inherent in the decision-making situation facing

members of the sponsoring team. These scenarios represent the members’
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hypothesas regarding alternative states of the world, a perspective that is
perfectly consistent with the SHOR paradigm. The overall expected utility of
different organizational options, including whether or not to develop an
expert system, depends on the (a) probabilities assigned to the various
scenarios, and (b) the utility of each of the options for each of the sce-

narios.

Other Subjective Test and Evaluation Methods. A fourth subjective
method is a MAUA-based cost-benefit analysis that uses optimization procedures
to identify the set of options that provides the greatest utility at specific
(total) levels of cost (see Ulvila and Chinnis, in press). As Adelman (1990b)
pointed out, this approach is particularly appropriate when the funding
horizon is uncertain for identifying the best (a) set (or suite) of decision
support technology (and/or other organizaticnal options), and (b) configura-
tion of components for a particular system at different levels of dollar cost.
For example, Rockmore et al. (1982) used this approach to select DART and four
other decision support systems for enhancing U.S. Air Force tactical decision
making., However, to the best of our knowledge, this subjective method has not

been used to evaluate potential expert systems.

Although we will not describe them here, there are other subjective
evaluation methods that have been used to test and evaluate expert systems.
For example, Liebowitz (1986) has used the Analytical Hierarchy Process
developed by Saaty (1980), Tong et al. (1987) have proposed a frame-based
approach, and Klein and Brezovic (1988) and Slagle and Wick (1988) have used
subjective test and evaluation approaches analogous to MAUA. The interested

reader is urged to consider them.

Discussion. An important characteristic in common among the subjective
test and evaluation methods described herein is that they develop an analyti-
cal model to represent the judgments of the participating decision makers.

One of the principal advantages of a "model" is that it permits sensitivity
analysis; members of the sponsoring team can change their judgments and see if
the changes have any effect on the results. For example, does changing the
relative importance placed on an attribute (e.g., response time) in a MAUA

suggest that a different alternative design for the expert system be imple-
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mented? This is an important capability early in the expert system develop-
ment process because, consistent with the SHOR paradigm, there may exist
considerable interpersonal disagreement among members of the sponsoring team
dua to both information input uncertainty regarding the hypotheses and

consequence-of-action uncertainty regarding options.

Moreovef. both the MOEs and methods used to convert performance measures
into MOEs developed early in the development process will be used during and
after development to evaluate the prototypes and final expert system, respec-
ctively. "1 that will change with time is basis for these judgments, both in
terms of the specificity of the option (i.e., the expert system) and, for
certain MOEs, t..» availability of empirical and technical performance data.
Consequently, it is important to obtain consensus among the sponsoring team,
which, it is assumed here, includes representative user(s) of the expert
system, early in (if not prior to)} the development process. To quote O’Connor
(1989, p. 103), "These attribute trade-offs are not after-the-fact evaluation
issues. Rather, they are decision issues relevant to the design problem and

should be resolved before detailed system design and testing take place."

There is a long line of research (for a review, see Delbecq et al.,
1975) demonstrating that, more often than not, structured facilitation
procedures can focus a group’s discussion, thereby increasing the probability,
not only of a more accurate final position, but one that is more strongly
supported by the group. The subjective methods described above further
improve discussion by letting members of the sponsoring team focus on a
quantitative model instead of each other. Eils and John (1980), for example,
found that groups using MAUA procedures in conjunction with group facilitation
procedures tended to make more accurate decisions than groups using only

facilitation procedures.

Better discussion occurs because group members have to define their
thought processes in order to provide the numerical inputs required by the
model. At the same time, however, the model permits group members to retreat
from their original position, or more strongly voice it, on the basis of the
numerical outputs and sensitivity analyses. Directing the discussion toward

aspects of the model helps remove some of the "personal” focus of group
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decision making. As was mentioned earlier, explicit identification of MOEs
and procedures for converting performance scores into a global MOE, represent
reference points for the development team to use when developing the expert
system, and criteria for the evaluator to monitor in order to assess whether

the development process is on track.

The above discussion has focused on the applicability of subjective test
and evaluation methods early in development in order to define (a) what the
expert system has to be capable of doing in order for the decision maker who
is using it to consider it to be a good system, and (b) whether development of
such an expert system 1s feasible given the financial, time, personnel, and
other constraints operating in the situation. However, subjective test and
evaluation methods are applicable throughout the development effort. The
reader should remember that subjective methods like MAUA, cost-benefit
analysis, decision analysis, and the different variations on these themes were
all developed to help decision makers systematically evaluate decision
options, regardless of what they might be. Consequently, they are potentially
applicable anywhere in the development process where members of the develop-
ment team need to evaluate one option against another. 1In those areas
important enough to warrant their use, they represent an audit trail for

indicating why one action was taken versus another.

Finally, we have tried to stress the importance of using subjective test
and evaluation methods to evaluate whether the prototype(s) and final,
operational version of the expert system are consistent with the initial goals
and objectives of the sponsoring team. It is important to point out that
objectives, and particularly the tradeoffs among them, can change during the
course of the development process either because of the changing environment
with which the sponsoring team is dealing, changes in the membership of the
sponsoring team, the insights gained during the development process regarding
what is technically feasible/infeasible, etc. Subjective evaluation methods
provide an effective mechanism for representing these changes and, through
sensitivity analysis, estimating their implications for the development

process.
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and Evaluatio e

Three classes of technical evaluation methods are, in turn, briefly
overviewed in this chapter: (a) static testing for assessing the logical
consistency and adequacy of the knowledge base; (b) using domain experts for
assessing the functional completeness and predictive accuracy of the knowledge
base; and (c) conventional software test and verification methods for assess-

ing the service requirements of the entire system.

Logical Consistency and Completeness. As Rushby (1988) points out, the
concepts of static testing in conventional software testing can be readily
extended to expert systems because, in both instances, the focus is on
detecting anomalies in the program without actually executing it on test
cases. To quote Rushby (p. 92), "An anomaly in a program is nothing more than
an apparent conflict between one indication of intent or purpose and another

." The types of anomalies of particular interest in expert systems pertain

to the logical consistency and logical completeness of the knowledge base.

Researchers (e.g., Kirk and Murray, 1988; Nazareth, 1989; and Rushby,
1988) have developed taxonomies of anomalies in the knowledge base that are
amenable to static testing. Some of these anomalies are listed below. In
doing so, we assume that the knowledge base is represented in the form of "if-
then" production rules or can be transformed into such a representation. As
Nazareth (1989, p. 257) points out, "For systems that employ more involved
representation schemes, the nature of the verification task may differ.”
(However, Hayes (1981) has shown the consistency between rules and frames,
which indicates that similar concepts are applicable to frame-based kaowledge
representation.)
» Redundant Rules. Individual rules or groups of rules that essen-
tially have the same conditions and conclusions.
. Subsumed Rules. When one rule’s (or rule group's) meaaing is
already expressed in another'’s that reaches the same conclusion

from similar but less restrictive conditions.

. Conflicting Rules. Rules (or groups of rules) that use the sanec
(or very similar) conditions, but result in differant conclusione,
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or rules whose combination violates principles of logic (e.g.,
transitivity).

. Circular Rules. Rules that lead one back to an initial (or
intermediate) condition(s) instead of a conclusion.

. Unnecessary If Conditions. Values on a condition that do not
affect the conclusion of any rule.

. Unreferenced Attribute Values. Values on a condition that are not
defined; consequently, their occurrence cannot result in a conclu-
sion.

) Illegal Attribute Values. Values on a condition that are outside

the acceptable set of values for that condition.

. Unreachable Conclusion (and Dead Ends). Rules that do not connect
input conditions with output conclusions.

Static testing for the above anomalies could be performed manually for
small, well-structured knowledge bases. For even moderately sized knowledge
bases, however, this approach is precluded by the amount of effort required
and the probability of disagreements among testers. Consequently, researchers
(e.g., Culbert and Savely, 1988; Franklin et al., 1988; Nguyen et al., 1987;
Stachowitz et al., 1988) have begun developing automated static testers, We
do not have the space here to discuss these different efforts. However, we do
want to caution the reader that automated static testers are not without their
limitations. To quote Nazareth (1989, pp. 265-266), "In most cases the
verification process is closely dependent on the structure of the problem
domain, making translation of principles to other systems difficult. Addi-
tionally, only a subset of the errors identified [above] are covered. ... The
expansion of verification scope has serious implications for detection.

[And] the majority are directed toward applications without uncertain in-
ference.” Nevertheless, automated static testers represent a major step
forward in assessing the logical consistency and completeness of a knowledge
base., Unfortunately, such static testeis are not available commercially, nor

are there plans to make static testers available in the near future.

Functional Completeness and Predictive Accuracy. By functional com-
pleteness we mean to address the range of domain-oriented questions, such as
whether the knowledge basa contains all desired input conditions and output

conclusions, or even "knows" its knowledge limitations. Some of these
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questions can be answered by domain references., However, the level of domain
expertise typically desired for expert systems is typically not codified in

such references. Indeed, Davis (1989) has argued that one of the major

contributions of expert system technology is the organization and codificaticnr

impacts it has on various disciplines. Consequently, domain experts are
typically required to evaluate the functional completeness of the system.
However, one should remember that the system’s level of functional complete-
ness depends on its stage of development and, most importantly, the domain

requirements resulting from the requirements analysis (step 1).

The predictive accuracy of the knowledge base pertains to the correct-
ness by which the rules (or whatever representation scheme) relates input
conditions to output conclusions. Such an assessment is essential for expert
systems, for "garbage in" is literally "garbage out."” Consequently, experts,
both those who participated in development and particularly those acting as
independent evaluators, should be used to evaluate the predictive accuracy,
and thus adequacy, of the knowledge base. Expert evaluation typically
proceeds in two ways: through examination of the knowledge base and the

evaluation of test cases.

Expert examination of the knowledge base typically focuses on whether
the system exhibits "correct reasoning." The obvious concern is, of course,
that the knowledge base not have mistakes., However, another concern, and one
which Gaschnig et al. (1983) pointed out is not shared by all developers, is
whether their programs reach decisions like human experts do. Many psycholo-
gists have long argued that this concern can not be answered for one cannot
look inside an expert’s head to obtain the "correct reasoning." Instead, all
one can do is build "paramorphic models" (Hoffman, 1960) of the reasoning
process, and evaluate their predictive accuracy against test cases. Indeed,
researchers (e.g., Dawes and Corrigan, 1974; Einhorn and Hogarth, 1975; Levi,
1989; Stewart et al., 1988) have shown that simple linear models can often
result in prediction as good as that achieved by the far more complex models

found in expert systems, or even by the experts themselves.

As Lehner and Adelman (in press) point out in their review of the

Iiterature, this is not a resolved issue. To quote Gaschnig et al. (1983. p.
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255), "... there is an increasing realization that expert-level performance
may require heightened attention to the mechanisms by which human experts
actually solve the problems for which the expert systems are typically built."
In addition, Adelman, Rook, and Lehner (1985) found that domain experts’
judgments of the utility of decision support system (including expert system)
prototypes were signif{icantly affected by the match between how they and the
system attempted to solve the problem. This suggests that, at a minimum, the
systen’s representation and presentation scheme needs to be reviewed,

However, if the principal objective is to develop a system that maximizes
predictive performance, then simple linear models, or mathematical wodels
unrepresentative of how the experts solve the problem, may be more appropriate

than models of human experts in certain situations.

The predictive accuracy of the knowledge base is assessed using test
cases and performance standards. The desired standard is ground truth; that
is, the unambiguously correct answers to the test cases. Correct answers are
most desirable because substantial research (e.g., see Ebert and Kruse, 1978;
Goldberg, 1970; Yu et al., 1979) has shown that experts do not always make
perfect Inferences and, in fact, often disagree with one another in the kinds
of complex domains for which many expert systems are developed. Often, buz
not always, it is inappropriate to expect better predictive accuracy from the
system than the expert. (This may not be the case where the system incor-
porates knowledge from a limited, well-defined domain—sucia as a procedure
manual-—or where the system represents the expertise of several experts.
Here, it may be appropriate to expect the system to be more accurate than any
given expert. Also, Brian Smith points out that "we already ask machines to
do things that people don’t do," such as land ar ai.plane in fog, and that in
many serious applications the standard of doing as well as a human is not good
enough (Davis, 1989).)

If ground truth measures exist, one can try to discriminate between
"accuracy" and "bias" in a signal detection sense (Lehner, 1989). Accuracy
refers to the degree of overlap in the distributions of belief values when the
hypothesis is true versus false. Bias refers to the proportion of false
negatives (hypothesis true, but user says false) to false positives (hy-

pothesis false, but user says true).
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If the correct answers do not exist or, for whatever reason, are inap-
propriate for the tes. cases, then one must rely on the judgment of an expert
or the consensus judgment of a group of experts. Considerable care must be
given to structuring the experts’ activities. In particular, the evaluation
team must ensure that the experts are ">lind" as to whether the system or
other experts generated the conclusions to the test cases. This is typically

referred to as a "Turing test” (e.g., see Rushty, 1988).

In closing this subsection, it is important to note that test case
construction is an important issue. To quote O’'Keefe et al. (1987, p. 83),
"The issue is not the number of test cases, it is the coverage of test
cases—that is, how well they reflect the input domain. The input domain is
the population of permissible input ..." [italics tteirs). The required
coverage capabilities is clearly a statement that needs to be a result of the
requirements analysis. For as O'Keefe et al. point out, developers frequently
devote a disproportionate amount of time to attempting to ensure tha. the
system can handle the truly "expert" cases that may occur very infrequently.
Moreover, these "infrequent® cases often become the test cases. This may or
may not be appropriate depending on the requirements for the system, and it

can certainly be expensive.

An alternative identified by O'Keefe et al. is to randomly select test
cases using a stratified sampling scheme such that the relative frequency of
the cases is representative »f those in the operational environment or
stipulated Iin the requirements. Addicionally. test cases should be chosen to
cover situations where a failure in the syslem would be especiclly serious.
It is also important that some ol =he test ~ases simulate the most ccmmon
operation of the system. Finally, Lehner and Ulvila (1989) have shown that
the number and type of test cc.es depend ¢n “he level of cvxpert sy. cem
performance that users cons.de to be valuable. The greater the difference
bk -ween the average leels of predictive accuracy with (varsus without) the
system, considered necessary by users, the smaller the number of t-st cases
actually required to test whether the expc.. system meets the criterion

requirement. This point will be considevred in substantial detail in Chapte:
5.
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. Service Requirements. Verification testing should be systematically
performed for the service requirements of expert systems, just like any other
software product. Fagan and Miller (as reported in DeMillo et al., 1987) have
identified four phases for software testing. The first phase is manual
analysis in which the requirements specification and design and implementation
plan are analyzed for problems by experienced software engineers. The second
phase 1s static analysis, which may be manual or automated, in which require-
ments and design deocuments and software are analyzed, but without code
execution. The third phase is dynamic analysis in which software is executed
with a set of test data, such as in random testing, functional testing, and
path testing. The fourth phase, which Fagan and Miller consider to be
optional, is attempting to prove the program as being correct, such as in
mathematical verification. Detailed discussions of these and other methods
can be found in, for example, DeMillo et al. (1987), Fairley (1985), Pressman
(1982), and Rushby (1988).

Jiscussion. 1In closing this subsection, we want to make four points
about technical evaluation methods. First, as Hamlet (1988, p. 666) poincs
. out, each method has its strengths and weaknesses and therefore, represents
"imperfect test methods.” Therefore, testers need to use multiple methods to
obtain accurate feedback. Secend, the intent of testing is to find errors.
As Fairley (1985, p. 268) points out, "... one has most confidence in programs
with no detected bugs after thorough testing and least confidence in a program
with a long history of fixes." Third, the best way to minimize the number of
errors and the amount of time, effort, and money required to fix them, is to
eliminate errors early in development. Consequently, as Gelperin and Hetzel
(1988) point out, software development life cycles are becoming "preventive"
through the application of scftware testing methods early in the development
process. And, fourch, testing methods using experts to evaluate the knowledge
base rely heavily on empirical analysis via test data. However, the reader
should keep a clear distinction between the empirical results of technical and
empirical evaluation methods. The former focus on how well the expert
system’s knowledge base was developed; tl» latter focus on how much better
system users, who may not be experts, can perform the task using the expert

system.
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Empirical Test and Evaluation Methods

Empirical evaluation methods can be classified into experiments, quasi-
experiments, case studies, simulations, and statistical analyses of historica®
data (e.g., see Adelman, 1990b). Only the first two methods are considered

here.

Experiments. Experiments are, by far, the most common and commonly
thought of empirical evaluation method. Moreover, they are particularly
appropriate when a number of people would actually use the developed expert
system, for experiments are designed to help generalize from a test sample to

the larger population.

One typically thinks of two kinds of experiments—benchmark testing and
factorial designs. The first kind tests the system against objective bench-
marks that represent performance constraints. If the system passes the
benchmarks, it proceeds further; if it fails, it undergoes further development
or is set aside. "For example, it is not enough to know that with the aid the
user can arrive at a decision in 30 min[utes]. If the organizational user
required a decision in 30 min{utes], the aid would be effective. 1If a
decision was needed in 15 min{utes], the aid would not be effective" (Riedel
and Pitz, 1986, pp. 984-985).

It should be noted that such performance benchmarks differ from the more
traditional time and efficiency measures used to benchmark computer systems.
{Note: Readers interested in the latter are referred to Press (1989), who
benchmarked different expert systems on the time required to load and execute
different types of knowledge bases, and the amount of disk space required in
source and fast-load formats.] Both classes of benchmarks typically get
developed during requirements analyses emphasizing a features-based approach.
Although such performance constraints may be necessary in real-time, life-

critical activities, they are unnecessary for many expert system applications.
Performance benchmarks represent noncompensatory decision rules; that

is, the system's other features do not compensate for failing the performance

benchmark. Such a position may be inconsistent with the decision rule guiding
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the sponsoring team’s evaluation. For example, it's quite possible that the
sponsoring team would give up some time for task accomplishment in order to

gain an improvement on other MOEs, such as decision performance.

The second kind of experiment is a factorial design (e.g., see Cochran
and Cox, 1957) where (a) one or more factors are systematically varied as the
independent variables, and (b) the dependent variables are gquantitative,
objective measures of system performance. There are five basic components of
factorial experiments. First, there are the participants, or subjects, in the
experiment. These may or may not be experts depending on the targeted users
of the expert system’s advice. We focus on "users" because the system

operators may or may not be the actual decision makers.

Second, there is the task that the participants perform during the
experiment. Test cases are often embedded in larger scenarios representative
of the organization's problem-solving environment in order to effectively
assess (1) the users’ ability to solve pro’ lems with and without the system,
and (2) their opinion of system characteristies, such as its speed, explana-
tion capabllities, organizational fit, etec. Remember, the expert system may

be addressing only part of a much larger organizational decision.

Third, there are the experimental conditions or independent variables of
interest, such as whether the participants perform the task with or without
the expert system. The level of task difficulty should be either as represen-
tative of the operational environment as possible or matched to the required
performance capabilities of the system. The capabilities of the system depend

on its stage of development (e.g., see Gaschnig et al., 1983; Marcot, 1987).

Fourth, there are the dependent variables (or MOEs) of interest.
Objective measures (e.g., performance and speed), observational measures
(e.g., regarding how the system is used) and subjective measures (e.g., user
confidence in the solution) can all be used as dependent variables. In the
case of decision quality, cone should use either ground truth measures (i.e.,
the correct answer) for the task or, if they do not exist or are inappro-
priate, the consensus or collective judgment of experts. If ground truth

measures exist, one should discriminate between "accuracy” and "bias" in a
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signal detection sense, as was done for the knowledge base. 1If experts are
used, "blind" ratings as to which experimental conditions produced the
solutions are again required to control against bias. Using at least two
experts who have not participated in the development is advocated here becaus-
of the substantial empirical resecarch shewing expert disagreement. However,
the use of one expert is acceptable if the requirement is that the expert

system emulate the judgments of that expert.

Fifth, there are the procedures governing the overall implementation of
the experiment. Substantial care should be directed toward accurately
representing the unaided as well as aided condition to ensure a fair test. 1If
performance is better in the "aided" condition, we want to be able to say that
it is due to the expert system and not some other extraneous factor. In order
to do so, we need to (ideally) try to control for all "plausible rival
hypotheses"” (Campbell and Stanley, 1966, p. 36) that might explain the
obtained findings. Toward that goal we introduce the concepts of reliability
and validity.

Yin (1984, p. 36) defines reliability as "demonstrating that the opera-
tions of a study—such as the data collection procedures—can be repeated,
with the same results.” The key concept is replication. In contrast, "valid"
is defined by Webster's dictionary (1966) as that which is sound because it is
"well grounded on principles or evidence."” If an experiment is valid, its
conclusions can be accepted; that is, rival hypotheses have been controlled
for.

An experiment can be reliable, but its conclusions invalid. However, an
experiment cannot be valid if it is unreliable; that is, one cannot conclude
that the results are well grounded if the evidence upon which they are based
is undependable. The basis for good experimentation is, therefore, reliable
(i.e., dependsble) procedures and measures. Although far from trivial,
reliability is typically possible in experimentation because of high ex-
perimenter control. For example, the experimenter can pilot-test and subse-
quently modify the procedures and measures until they produce the same resui’

when applied to the same situation, regardless of who performs the experiment
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We consider four types of validity. First, Yin (1984, p. 36) has
defined internal validity as "establishing a causal relationship, whereby
certaln conditions are shown to lead to other conditions, as distinguished
from spurious relationships." As Cook and Campbell (1979, p. 38) note,
"Internal validity has nothing to do with the abstract labeling of a presumed
cause or effect; rather, it deals with the relationship between the research
operations irrespective of what they theoretically represent" [italics
theirs]. Although there are numerous threats to intermal validity, randomiza-
tion of participants to experimental conditions is the most effective means

for guarding against them.

In addition, one needs to consider the experiment's construct validity,
its statisti.al conclusion validity, and its external validity. Yin (1984, p.
36) has defined construct validity as "... establishing good operational
measures for the concepts being studied." Construct validity is required in
order to "make generalizations about higher-order constructs from research
operations®” (Cook and Campbell, 1979, p. 38) in a particular study. Good
construct validity means that we are measuring that, and only that, which we
want to be measuring. Of particular concern in expert system evaluations is
that the "system treatment" is not confounded with something else. If
confounding exists, then the "something else” represents rival hypotheses that

could explain our obtained results.

"Statistical conclusion validity is concerned not with sources of
systematic bias but with sources of random error and with the appropriate use
of statistics and statistical tests" (Cook and Campbell, 1979, p. 80). The
former concern is with whether the study is sensitive enough to permit
reasonable statements regarding the covariation between the independent and
dependent variables. The latter concern is with what constitutes appropriate
statistical tests of these statements. We will return to both concerns in

substantial detail in later chapters.

As Campbell and Stanley (1966, p. 5) point out, "External validity asks
the question of generalizability: To what populations, settings, treatment
variables, and measurement variables can this effect be generalized?" [italics

theirs]. Within the context of expert system evaluations, external validity
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deals with the extent to which the results of an experiment conducted in a
simulated (laboratory) setting will generalize to an operational environment.
Consistent with an iterative, prototyping approach, the representativeness of
the experimental setting and the level of the system’s performance require-
ments should advance throughout the development cycle. Although the latter is
routinely acknowledged, the former is not. It must be remembered that expert
systems and, indeed, most information and decision technology, fail to be
successfully implemented for organizational, not technical, reasons. Conse-
quently, increasing the fidelity of the organizational and environmental
interfaces between the system and its users is essential in generalizing the

performance results obtained in the laboratory to the real world.

Quasi-Experiments. Ildeally, field experimentation would be used to
assess if the expert system significantly improved performance in an actual
organizational setting. For example, appropriate organizational units (e.g.,
sections in a company or governmental agency) would be randomly assigned to
the "with system" and “without system" conditions, and their performance
measured until it stabilized. If possible, a "placebo"” condition would be
included too. Organizational units in this condition would be given some
"treatment” that was not hypothesized to have any effect on performance. This
is analogous to giving patients sugar pills when evaluating new drugs, and is
oriented to controlling for the "Hawthorne effect” (e.g., see Schein, 1970)
confounding in the "with system" condition that is the result of being given
special treatment and not the technology. The unit of analysis is the
performance of the organizational unif; consequently, a large enough sample of

units would be required for performing statistical tests.

The sample size and randomization requirements of true experiments is
typically not possible in many organizations. Quasi-experimental designs
should be used in such situations. To quote Campbell and Stanley (1966, p.
34), "There are many social settings in which the research person can intro-
duce something like experimental design into his scheduling of data collection
procedures (e.g., the when and to whom of measurement), even though he lacks
the full control over the scheduling of experimental stimuli (the when and .

whom of exposure and the ability to randomize exposures) which make a true
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experiment possible. Collectively, such situations can be regarded as quasi-

experimental designs" [italics theirs].

There are a number of different types of quasi-experimental designs.
Among the ten types identified by Campbell and Stanley (1966) are: (a) time
series designs, where the organizational unit would be measured for a long
pericod of time before and after receiving the system; (b) multiple time series
designs that do not use randomization, but do use a control group that does
not receive the system; and (c¢) nonequivalent (and nonrandomized) control
group designs that rely on statistical techniques like analysis of covariance
to assess whether the pre-test and post-test difference for the expert system
group 1is significantly better than that of the control group. These and other
empirical test and evaluation methods will be considered in greater detail in

later chapters.

CHAPTER SUMMARY

This chapter had three principal sections. The first section overviewed
test and evaluation criteria identified by Adelman and Ulvila (in press).
Although the specific criteria one would use would depend on the specific
requirements of one’s users and sponsors, the criteria presented herein
contained the wide range of test and evaluation criteria commonly found in the
literature and, therefore, can give one a broad list of criteria from which to
start. The second section of the chapter overviewed the expert system
development approach. Although this approach is moving toward incorporating
aspects of more traditional software systems engineering, it is still epito-
mized by iteration, prototyping, and test and evaluation. And in the third
section, we overviewed the many different types of subjective, technical, and
empirical test and evaluation methods. A multi-faceted test and evaluation is
required in order to provide the different kinds of information that develop-
ers and sponsors need in order to assess the utility of an expert system, both

during and after development.
All three classes of test and evaluation methods are applicable during a

fcrmal test and evaluation of an expert system prototype by an outside group,

as was shown in Chapter 1. In addition, however, specific methods are more or
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less applicable at other times in the development cycle. 1In particular,
subjective evaluation methods are applicable early in the cycle because they
represent an explicit means for defining the judgments of members of the

sponsoring team and potential users of the system.

Technical test and evsluation methods are also applicable during design
and development. For example, as part of the knowledge elicitatior and
representation process, one should routinely assess the adequacv and accura~-
of the knowledge base by using (1) static testing to help assess the knowledge
base’'s logical consistency and completeness, and (2) experts, both those
participating in development and those acting as evaluators, to help assess
the knowledge base’s functional completeness and predictive accuracy. In
addition, traditional software test and verification methods can be used to
help assess the "service" versus "competency" requirements of the expert

system.

In contrast to technical test and evaluation methods, which focus on how
well the system was developed, empirical test and evaluation methods focus on
how well decision makers can perform their task(s) with (versus without) the
system. From an iterative, prototyping perspective, it is anticipated that
experiments will be conducted throughout development as a means of objectively
measuring the performance of the expert system and testing hypotheses foi
improving it. After transferring the expert system to the test organization,
experiments, quasi-experiments, and case studies can be used to evaluate
performance in the actual, organizational setting.

The different methods overviewed herein address the different test and
evaluation criteria represented in the hierarchy shown in Table 2-1. This
hierarchy not only represents a framework for summarizing the criteria, but
for integrating them using multiattribute utility assessment. In particular,
we will demonstrate that this hierarchy can be used in conjunction with MAUA
scoring and weighting procedures to assess the overall utility of an expert
system to users and sponsors. Consequently, with these thoughts in mind, we
now turn to consider subjective test and evaluation methods in more detail

the next chapter.
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CHAPTER 3:

MORE ABOUT SUBJECTIVE TEST AND EVALUATION METHODS

The last chapter overviewed five different subjective evaluation
methods: multiattribute utility assessment (MAUA), cost-benefit analysis,
the dollar-equivalent technique, decision analysis, and a MAUA-based cost-
benefit analysis. We also briefly overviewed how feature-based criteria
lists and value of information analysis, two other subjective evaluation
methods, can be subsumed under the broader methods of MAUA and decision
analysis, respectively. This chapter will (1) overview the applicability
of each of the five subjective methods in more detail, and (2) provide

details of a specific MAUA-based method for testing expert systems.

This chapter will continue to emphasize the importance of using
subjective evaluation methods to link together Steps 1 (requirements
analysis) and 8 (evaluation) in the expert system development process
through the feedback provided in Step 9 (feedback). For it is by defining,
at the outset of the development effort, the requirements for evaluating
the expert system that helps ensure that the development effort will stay
on track and that the expert system will be used by the persons for whom it
is being developed. Moreover, the sponsoring team’s objectives, and
particularly the tradeoffs between objectives, can change during the course
of the development effort, either because of the changing environment with
which the sponsoring team is dealing, changes in the membership of the
sponsoring team, the insights gained during the development process
regarding what is technically feasible or most appropriate, etc. Subjec-
tive evaluation methods provide an effective mechanism for representing
these changes and, through sensitivity analysis, estimating their implica-
tions on the global measure of effectiveness (MOE). More generally, such
methods provide an explicit mechanism (and audit trail) for evaluating
whether the prototypes and final, operational version of the expert system

ate consistent with the sponsoring team’'s goals and objectives.
The applicability of subjective evaluation methods to the other steps

in the development process will not be emphasized in this chapter. As was

poeinted out in the last chapter, these methods can be readily used by the
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development team throughout the development process—for example, in for-
mulating specific requirements, in evaluating off-the-shelf software (e.g.,
shells) versus project-specific software, or in evaluating various hardware
configurations. Remember, these subjective methods and variations were all
developed to help decision makers evaluate systematically decision options,
regardless of what they might be. This presentation is an adaptation of
the methods for testing expert systems. The methods are applicable
anywhere in the development process where members of the development team
need to evaluate one option against another. Thus, in those areas impor-
tant enough to warrant their use, they represent an audit trail for

indicating why one action was selected over another.

Finally, it is important to again point out that Andriole (1989) iden-
tifies a wide range of "requirements analysis methods" and taxonomies for
profiling the task, user, and organizational requirements. These methods
include open- and closed-ended questionnaires, various types of interview-
ing procedures, the observation of users’ behavior as they perform
scenarios (i.e., hypothetical decision problems), protocol analyses where
users describe their decision-making processes as they perform scenarios,
etc. We will not discuss these methods because they are concerned with
requirements analysis rather than testing and evaluation. (For the same
reason we will not discuss prototyping methods or systems engineering

methods . )

We do want to point out, as Andriole does, that requirements analysis
methods are fallible; consequently, members of the development team should
use multiple methods in order to ensure the reliability and validity of the
results of the requirements analysis. By reliable we mean that the same
method will produce the same results at different times. By valid we mean
that the results are, in fact, related to the utility of the expert system.
Consistent with the prototyping strategy, we would expect less reliability
and validity of the results early in the development process. As a tester
or evaluator, you can help the development team assess which aspects of the
requirements analysis need more work, as well as what o%her methods could

be used to improve the analysis, before moving on to develop the functiona:
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model of the system. In this respect, you should find subjective evalua-

tion methods particularly helpful.

MULTIATTRIBUTE UTILITY ASSESSMENT (MAUA)

There are numerous texts (e.g., Huber, 1980; Keeney and Raiffa, 1976;
Pitz and McKillip, 1984) and papers (e.g., Edwards, 1977; Einhorn and
McCoach, 1977) describing MAUA. As Huber (1980, p. 46) has pointed out,
"Multiattribute utility models (MAU models) are designed to obtain the
utility of items or alternatives that have more than one valuable at-
tribute; therefore, they must be evaluated on more than one criterion. A
MAU model essentially shows a decision maker how to aggregate the utility
or satisfaction derived from each of the various attributes into a single
measure of the overall utility of the multiattributed item or alternative."
Expert systems are clearly "items" that have numerous attributes (or
characteristics) of potential value to a decision maker. MAUA represents a
method for combining how well an expert system scores on these attributes

(1.e., individual measures of effectiveness) into an overall assessment.

All of the subjective evzluation methods that we will consider in this
book proceed by a "divide ard conquer” or "decomposition and reintegration”
approach. When applying MAUA to the testing and evaluation of expert
systems, the expert system is conceptually decomposed into criteria that
can be defined well enough so that one can obtain either subjective or
objective measures of how well the expert system performs on each of them.
This decomposition typically proceeds through the creation of a value
hierarchy, such that the global criterion entitled "the overall utility (or
value) of the expert system" is decomposed into major categories of
criteria (e.g., the knowledge base, the inference engine, etc. as shown in
Table 2-1). These categories are further decomposed, and so forth, until
one is reasonably confident that one can define and obtain precise.
reliable, and valid measures (or scores) of the expert system on each

bottom-level criterion in the hierarchy.

[Note: According to Huber (1980), the bottom-level criteria should be

called "attributes." This convention is not strictly adhered to and, in
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fact, it is not uncommon to use the words "criteria" and "attributes"
interchangeably. Moreover, it is not uncommon for the names Multiattribute
Utility Assessment (or Analysis), Multiattribute Utility Theory, and Multi-
criterion Decision Making to be used synonymously, even though purists
within each "variation on the theme"” might take issue with this state of
affairs. In this book, we will try to consistently use the term "attri-
butes" to refer to the bottom-level evaluation criteria. However, the

reader should not be concerned if the terms are used synonymously.]

By "precise" one means that the attribute’s definition is sufficiently
clear and unambiguous so that everyone knows exactly what characteristic of
the expert system is being measured by the attribute and how to measure it.
By "reliable" one means that, at a minimum, one will get approximately the
same score for an expert system on an attribute if one uses the same
measurement instrument at two different points in time. This is referred
to as "test-retest" reliability. The measurement instrument could be
subjective (e.g., a person’s score in answering a question) or objective
(e.g., a performance score in an experiment). In addition, one would hope
to obtaln "inter-instrument™ reliability as well, such that two measures of
an attribute, whether they are subjective or objective, would produce ap-
proximately the same scores. Finally, by "valid" one means that the
attribute is, in fact, related (or contributes) to the overall utility of
the expert system as determined by the key decision maker or the sponsoring
team. While many people would like to think that objective, performance
scores are the only valid MOEs, the overall decision regarding the value of

an expert system is invariably a mix of subjective and objective measures.

More broadly, it is desirable that the MAU hierarchy have the follow-
ing general features: be (1) comprehensive enough to account for all the
different MOEs deemed important when evaluating the expert system; (2)
capable of differentiating between an acceptable and unacceptable (or
"good" vs. "bad") system; and (3) composed of independent attributes.
Although the first two features appear clear and straightforward, the last
one may appear counter-intuitive and it is not absolutely essential. Tec
quote Ulvila et al. (1987, p. 25), "While it 1is desirable to satisfy the

iast characteristic, it is by no means required., It is possibie to define




evaluation factors that are dependent upon each other and interact in
complex ways. However, most of the value of an MAU model can usually be
obtained by using a simpler form in which each factor is independent of all
other factors. If it is clear that two factors are not independent, but
both are interacting, it is sometimes possible to define a single factor
that incorporates the critical aspects of the dependent factors. (Notice
that here we are addressing independence in the worth [italics theirs] of
an attribute, not technical independence-—e.g., run time, computer usage,
performance speed, and judgmentally assessed speed are likely to be highly
dependent but may represent attributes of separate interest to the

tester.)"

It is important to note that a hierarchy, while extremely helpful, is
not absolutely essential. All that is essential is that one be able to
define a comprehensive set of (independent) attributes that can be measured
precisely, reliably, and validly so that the overall utiiity score can
differentiate between an acceptable and unacceptable expert system. The

hierarchy simply helps one perform this task.

The application of MAUA during, or even prior to, the requirements
analysis step is typically oriented toward helping the sponsoring and
development teams (a) identify the broad organizational regquirements the
expert system needs to satisfy, and (b) select the general type of expert
system that will satisfy these requirements. The hierarchy of MOEs
presented in Table 2-1 does provide a comprehensive reference point (or
checklist) of requirements that an expert system should satisfy and,
therefore, provides an effective design and evaluation tool for guiding and
monitoring, respectively, the ongoing development process. It does not,
however, necessarily provide an effective hierarchy of MOEs for initially
selecting the general type of expert system to develop, for that decision

may require different types of information.

As a tester or evaluator, the hierarchy of MOEs and, more generally,
the application of MAUA should be tailored to the objectives and informa-
tion needs of the members of the sponsoring team with which one is

working. In fact, few structuring techniques have been proposed by
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decision scientists. [wo techniques have, however, been rcutinely used by
analysts applying MAUA. a top-down (or hierarchical) approach (Keeney and
Raiffa, 1976), and a bottom-up (or attribute listing) approach (Kelly,
1973). The top-down approach to structuring the hierarchy proceeds as
follows: the upper level nodes are listed first; then each node, in turn,
i{s subdivided into its component attrib .tes. The process continues until
it identifies the lowest-level attributes. In contrast, the bottom-up
approach proceeds by first obtaining a list of all of the possible at-
tributes (l.e., lower-level nodes of the hierarchy) without any concern for
their hierarchical arrangement. Au cffective procedure for doing this that
is quite consistent with the SHOR paradizm is to ask the participant (e.g.,
decision ma -) to describe how the alternatives are different (e.g.,
better or worse) from each other. The specific differences typically
represent the bottom-level attributes. The attributes are subsequently
clustered together to form the criteria representing t..e branches of the

hierarchy.

In general, there has been very little research evaluating the
relative effectiveness of MAUA structuring techniques, and only one study
(Adelman, Sticha, and Donnell, 1986) doing so under controlled, exnervi-
mental conditions where there existed an accepted multiattributed bierarchy
as an external criterion for measuring effectiveness. With regard to the
latter, Adelman et al. found no significant difference in the accuracy of
top-down and bottom-up structuring techniques. Although equivocal, their
results did, however, indicate that the top-down technique results in
deeper hierarchies than the bottom-up technique. Since the deeper hierar-
chies did not result in more accurate ones, these results suggest that
greater depth is merely a by-product of the top-down approach and not a
funccion of a more comprehensive problem decomposition. Their "post hoc"
analysis strongly suggested that combining the two approaches would result
in significantly more accurate hierarchies. The hierarchy of expert system
attributes described later in this chapter was developed by a comhination

of top-down and bottom-up techniques.

Reintegration typically occurs within MAUA through the application »:

utility functions and assessment of relative importance weights. Remember
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the expert system is being evaluated on many different atcributes. The
natural measurement scale for an attribute depends on the nature of the
sttribute. For example, the scale for an attribute could be in objective
units (e.g., minutes for time), subjective units (e.g., the eleven-point
questionnaire scale used in the DART evaluation), or categories (e.g., yes
or no to the presence of a feature), depending on the nature of the
attribute. A common scale is, however, required in order to compare scores
on one attribute with scores on another (i.e., combining "apples with
oranges”) and, by so doing, obtain an overall assessment for the item
(e.g., expert system) being evaluated by the decision maker. A "utility"
scale, which conceptually measures psychological value or worth or satis-
faction, meets this requirement. Utility (or value) functions are used to
translate the performance on an attribute into a utility score on that
attribute. Then, relative importance weights (or other forms of combina-

tion rules) are used to assess the relative value of a utility score on one

attribute with the utility score on another.

Utility functions for individual attributes tend to be linear,
increasing or decreasing in form, as we used in the case study shown in
Chapter 1. But as Hammond et al. (1975) point out, there is no reason why
they can not be U-shaped or inverted U-shaped or even a step-function such
that the utility score on an attribute is zero until a certain level of
performance is achieved on the attribute. The functions are represented
pictorially by utility curves, such as the hypothetical ones shown in

Figure 3-1 from Ulvila et al. (1987, p. 29).

Utility
Utility
Utility

Utility

Attribute Attribute Attribute Attribute
(o) (v) (c) (d)

Figure 3-1: Some Possible Shape Utility Functions
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The specific range for the utility scale is arbitrary; for example,
Huber (1980) uses a 0 to 100 range throughout his book and Keeney and
Raiffa (1976) use a 0 to 1.0 range throughout theirs. What is critical,
however, is the relative utility (or value) of the scores on the scale, anz
the relationship between differences on the scale. A utility score of 50
on a 0 to 100 utility scale (or 0.5 on a 0 to 1.0 utility scale) indicates
that it is mid-way in value between the lowest and highest values on that
scale. The difference between 25 and 50 on a utility scale {s equivalent
to the difference between 50 and 75 on that scale. The actual values on
the natural scale for the attribute that corresponds to these utility
values will, more often than not, fail to correspond to such a straight-

line function.

Consider the hypothetical utility function shown in Figure 3-2 from
Ulvila et al. (1987, p. 29), which transforms the time required to set up
an artificial intelligence system into a utility score in the military
context they were considering. A utility score of 100 is obtained for a
set-up time of ¢ minutes; a utility score of O s obtained for a set-up
time of 60 minutes. One obtains half (or more) of the utility if the
system is set up in 5 minutes (or less). Moreover, an increase from 5 to
15 minutes, which has a utility scale value of 25, was considered as
serious as an increase from 15 to 60 minutes. This utility scale is

clearly telling the developer the importance of a fast set-up time to the

user.
100 )
7%
2
g 50
3
25 A
N\&
0 T T T T T T T T T T X
Q 5 10 15 20 25 30 35 40 45 30 35 60

Set—~up time (minutes)

Figure 3-2: Hypothetical Utility Function for Expert System Set-Up Time
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Utitity

Nor are utility functions limited to characteristics with continuocus

measures. Utility functions can also be constructed for categorical

variables or other variables with discrete units. Some examples are shown

in Figure 3-3. The important features are that the horizontal axis
uniquely determines the state of the attribute, and the vertical axis

specifies the value of the states.

100 = X 100 — X 100 -% 100 - X
} 4
x X
oy > >
50 ~ £ 50 - £ so A £ s0
X 3 5 5
X
0 R Q ey o
EP VP P G VG EG No Yes tow Med High Low Ideal High
Attribute (e) Attribute (f) Attribu (g) Attribute (h)

EP = Extremely Poor
VP = Very Poor

P =Poor

G = Good

VG = Very Good

EG = Extremely Goad

Figure 3-3: Possible Discrete Utility Functions

But how important is the relative importance of one attribute versus

another? The relative importance of a utility score on a bottom-level

attribute is reflected typically by (1) its relative weight compared to the
other bottom-level attributes comprising a component, and (2) the relative

weight of the components moving up the hierarchy. For example, Figure 3-4

(from Buede and Adelman, 1987, p. 143) considers the relative importance of
five attributes, which we‘ll initially assume are zll bottom-level at-

tributes to the same upper-level criterion. Specifically, each of the five

rectangles in the top half of Figure 3-4 represents the utility scales for
an attribute. The rank order of the rectangles (going from left to right)
represents the rank order of the attributes in terms of their relative
importance; that is, attribute A {s more important that attribute B, and so
forth. The relative height of the rectangles indicates their relative

importance weights. For example, attribute B is about 60% as tall as
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attribute A; consequently, a utility score of 100 on attribute B is
equivalent to a utility score of 60 on attribute A. Similarly, attribute C
is half as tall as attribute B; consequently, a utility score of 100 on
attribute C is equivalent te a utility score of 50 on attribute B and a
utility score of 30 on attribute A. A score of 50 on attribute C iz
equivalent to a score of 25 on attribute B and a score of 15 on attribute

A.

l
LJBE’];:

0 3
c c
)
A A
[ 8
A<B+C+D A>B+C+E

Figure 3-4: A Pictorial Representation of the Relative Importance
of Different Utility Scales

The bottom half of Figure 3-4 i{llustrates the "paired comparison"
weighting technique, which utilizes the (utility) scaling concepts il-
lustrated in the top half of the figure. Specifically, it shows that a
utility score of 100 on attribute B plus a utility score of 100 on at-
tribute C results in a (combined) utility score of only 90 on attribute 4;
consequently, the combined relative importance weights for attributes B and
C must be less than the weight for attribute A. In the example shown, the
added importance weights for attributes B, C, and D are greater than that
for attribute A, but the added weights for attributes B, C, and E are not

By comparing the overall value of a utility score of 100 on each of che
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attributes, one is able to assess the relative importance of the attri-

butes.

The same procedures can be used to assign relative weights to the
attributes at the next level of the hierarchy, and so forth up the hierar-
chy until all the attributes at each level of the hierarchy have been
assigned relative importance weights. The weights at each level of the
hierarchy should be proportional such that the sum of the weights at each
level is the same. We recommend scaling the weights to sum to 1.0 at each
level so that the overall utility scale is on the same scale as {s being
used for each attribute. If one then multiplies the weights along each
branch from the top to the bottom of the hierarchy, one will obtain a
cumulative weight on each bottom-level attribute that indicates the overall

importance of one bottom-level attribute versus another.

This method of assigning weights to attributes assumes that the at-
tributes are "additively independent" (Keeney and Raiffa, 1976). Roughly
speaking, additive independence is a condition where the utility for
improvements in one attribute does not depend on the levels of the other
attributes. Other, more complicated formulations are possible, and many of
them are described by Keeney and Raiffa (1976). However, Edwards (1977)
notes that (p. 250), "theory, simulation computations, and experience all
suggest that {the additively independent form] yields extremely close
approximations to very much more complicated "true" utility functions,
while remaining far easier to elicit and understand."” The additive form is
assumed in the framework described later in this chapter and used through-

out this book.

As has been discussed thus far, reintegration of the bottom-level
scores for an expert system into the assessment is achieved in MAUA by the
weighted sum of all the utility scores. This can be represented algebra-

ically by equation [3-1]:

U(i) = ? hgu(xxj) [3-1}
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where:

u{i) is the overall utility for alternative i;
W, is the "cumulative" relative weight on attribute (j);
u(xyy) is the utility value for alternative i on attribute j; and

z indicates the summation over all attributes.

Equation [3-1] focuses on the bottom-level attributes in a hlerarchy, for
the relative weights (w;) In Equation {3-1] represent the "cumulative
weights™ on the bottom-level attributes. They are obtained by multiplying
the weights along each branch of the hierarchy from the top to the bottom.

The same numerical results can be obtained if one goes from the bottom
up in the hierarchy. That is, one would multiply the noncumulative
relative weights and utility scale values achieved by the alternative for
each of the bottom-level attributes in the hierarchy. One would obtain a
score for the criterion at the next higher level of the hierarchy by
sumning the weighted utility scores for all the bottom-level attributes
that it comprises. The process is then repeated. One would multiply this
score by the relative weight for the criterion ta obtain a weighted score
for the criterion. Then, one would add the weighted scores to obtain a
utility score for the criterion category at the next higher level of the
hierarchy, and so forth, moving up the hierarchy until one obtained an

overall utility score.

As Hogarth (1987) has pointed out, the additive decision rule shown in
Equation [3-1] is a compensatory combination rule because high utility
values on certain attributes can compensate for low values on other
attributes and still result in a good score on the global MOE. However, as
Riedel and Pitz (1986) pointed out, it might be more appropriate to use a
noncompensatory rule to ensure that the expert system gets a low score on
the global MOE if it fails to achieve the necessary performance level on a
critical bottom-level attribute. Thils perspective that can be readily
handled arithmetically in MAUA by using (1) a zero/one utility score to

reflect whether or not the expert system passed the threshold on the
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critical dimension(s), and (2) a multiplicative combination rule to obtain
the global MOE utility score. Alternatively, we recommend the use of
thresholds for attributes that are noncompensatory. Thresholds should be
set for attributes where nonperformance on the attribute should lead to a
poor overall assessment ragardless of the performance on other attributes.
Using this system to evaluate an expert system, a failure to pass a
threshold is noted for all attributes where the failure occurs, and this
notation is carried up in higher-level assessments regardless of the
system’'s weighted-average utility score. This threshold system is utilized
in the MAUA computer program described by Ulvila et al. (1987).

In closing this discussion, it is important to emphasize that MAUA can
be used to create an assessment structure for combining an expert system
using both objective and subjective MOEs. Its application, however, might
inftially be disturbing to (and difficult for) members of both the sponsor-
fing and developing teams, for it emphasizes the subjective process decision
ma " .¢s typlcally go through when evaluating expert systems. To quote
Riedel and Pitz (1986, pp 987-988), "The [utility scales] and welghts are
necessarily personal judgments by the decision maker that express the
contribution each attribute makes to the overall MOE. There is no way to
avoid the fact that the overall MOE must be based on such judgments, or the
fact that no mechanical procedure can replace thls subjective assessment

.." This does not mean, of course, that MAUA is the only subjective
evaluation metuod that one can use to evaluate how well an expert system is
meeting the sponsoring team’s requirements, but it will be the major
subjective method used in this book. In particular, we propose a MAUA
framework later in this chapter, and we propose weights based on charac-
teristics of the expert system in Chapter 7. We now turn to consider a
second subjective method that has been used for system evaluation—cost-

benefit analysis.
COST-BENEFIT ANALYSIS AND THE DOLLAR-EQUIVALENT TECHNIQUE
As Riedel and Pitz (1986, p.991) point out, "In making decisions about

a system, cost is often an important factor ... The problem is how to

integrate the cost factor into the evaluation design.” With MAUA, cost 1s
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simply considered as one of the (higher-level) MOEs. 1Its impact on the
evaluation is determined by its impact on the overall utility score, which
is achieved by (a) the utility function translating dollar costs into a
utility score, and (b) the relative importance given to the cost MOE. As
Huber (1980, pp. 79- 83) points out, in traditional cost-benefit analysis
and the dollar-equivalent methods, however, all the benefits, as well as
costs, are translated into dollar values instead of utilities. In the
former, standard economic or accounting practices, such as employing the
rate of return or time value of money concept, are used to create monetary
equivalents. In the latter, "... the monetary equivalents are developed
judgmentally when the standard economic techniques are stretched beyond
their limits.™

The perhaps surprising conceptual simllarity between cost-benefit
analysis and MAUA can be illustrated by listing the following five prin-
cipal steps for implementing the former, as identified by Keim and Janaro
(1982): (1) identification of pertinent measures of effectiveness, that
is, benefits; (2) the description of alternatives; (3) the "expression" of
performance and cost as functions of the characteristics of each alterna-
tive; (4) the estimation of appropriate (dollar) values for the (perfor-
mance) equation parameters; and (5) the computation, sensitivity analysis,
and presentation of results. This sounds remarkably like the MAUA proce-
dures described above where one (a) decomposed the global MOE into a
hierarchy of MOEs (i.e., attributes); (b) defined the alternatives; (c)
identified the natural scale value for each bottom-level attribute and
obtained the scores for the alternatives on scales; (d) constructed utility
functions for each bottom-level attribute and relative weights for all the
attributes, in order to convert the natural scale values into utility scale
values; and (e) computationally used a weighted, additive decision rule (or
some other combination rule) to convert an alternative’s scores on each of
the bottom-level attributes into an overall utility score on the global
MOE. Sensitivity analysis is routinely performed in MAUA to assess the
impact of different scores, utility functions, and relative weights (or
combination rules) on the overall MOE score for one or more alternatives.

The big differences between cost-benefit analysis and MAUA is that the
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former relies as much as possible on tangible (i.e., objective) benefits,

and uses dollars Instead of utilities as a metric for measuring value.

From a MAUA perspective, the omission of intangible benefits (and
costs) is equivalent to omitting attributes from the MAU hierarchy.
Whether this is acceptable or not depends on the nature of the "item(s)"
being evaluated by a cost-benefit analysis. Lay (1985, p. 32) has dis-
cussed this point with consideration to expert systems. "Most capital
investments decisions in the business field can be evaluated in terms of
return on investment (ROI). This is because the asset that is being
evaluated will create tangible Benefits (such as the manufacture of a
product for subsequent sale). An information system (particularly an
expert system), may only produce intangible benefits [e.g., information and
decision process support] and therefore the ROI criteria can no longer be
applied. Intangibles, although not quantifiable, should be included in the

process since their impact on the organization may be significant.”

Obviously, we disagree with Lay’s statement that intangibles are not
quantifiable, for MAUA provides explicit procedures for quantifying the
perceived value of intangibles. We do, however, agree with his focus on
the significance of including intangibles in the evaluation. However,
their inclusion or omission should depend on what factors the sponsoring
and development teams consider to be important design and evaluatioa
requirexents. Tf intangibles are deemed unimportant enough to exclude them
from the analysis, particularly after a thorough discussion of the ad-
vantages and disadvantages to including them, then it might be more ap-
propriate to perform cost-benefit analysis than MAUA because of its greater

familiarity and use as common business practice.

Actually, as Huber (1980, p.83) points out, the traditional cost-
benefit analysis approach Is a special case of the dollar-equivalent
method, which is "... a special case of the more general ... MAU model
technique.” The appropriateness of the traditional cost-benefit analysis
and dollar-equivalent methods versus MAUA depends on the defensibility of
the conversions to monetary equivalents. If standard economic practices

are clear and defensible, Huber argues that the traditional cost-benefit
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analysis approach is often preferred because its conversions are more
explicit and agreed-upon. However, as Huber (1980) and Riedel and Pitz
(1986) point out, cost-benefit analysis requires substantial ludgments tha’
may be particularly sublect to various biases as a result. "When conver
sion of the payoffs on all attributes to dollar equivalents seems reason-
able and defensible, the dollar-equivalent techniaue is oreferred nver the
MAU model technique. This is a consequence of the fact thar the single
aggregate figure derived in dollars can be more ~asilv compared to the
levels of other criteria that were not included in the analvsis" (Huber,
1980, p. 82). As always, however, the needs and preferences of members of
the sponsoring and development teams should be factored inte the decision

regarding which subjective evaluation method to use.

In closing this discussion, it is important to note that Keim and
Janarc (1982) have argued for a phased cost-benefit analysis, where the
nature of the analysis changes through the development cycle. Specifical-
ly, at the beginning of the effort, they argue for a relative cost-benefit
analysis, where the focus is c¢n fidentifying the relative costs and benefit=x
of a range of alternative system configurations {n oruer to select an
alternative (or limited range of alternatives) for further specification.
Their reasoning is that "... due to the evolutionary nature of the final
system configuration the original estimates are often grossly distorted.
The only way to make evaluations reasonable is to compare relative cost-
benefit scenarios for the range of alternatives under consideration" (p.
25). As one moves through the different development steps, the system
design becomes more specific; consequently, one can drop the relative
analysis" focus because increasingly specific and quantifiable information
is available for the system evaluation. Such a "phased" orientation is, of
course, consistent with the discussion above of striving to link together
requirements analysis (and the selection of alternatives) with thelr formal

evaluations.

DECISION TREE ANALYSIS

Decision tree analysis is a formal method for combining uncertainties

with utilities (or monetary equivalents) when evaluatiung alternative
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decision options. There are numerous texts on the subject (e.g., see Brown
et al., 1974; von Winterfeld* at.d Edwards, 1986; Watson and Buede, 1987).
We will not discuss it {: _reat detail because, at least to our knowledge,
it has not yet been i,piled to evaluating expert systems. The interested
reader is, however, referred to Cohen and Freeling (7981), who provide a
detailed theoretical presentation of its potential applicability for
evalue.'ng information systems, and to 0'Connor (1989), who discusses its
applicability in developing and evaluating alternative architectures for

the Strateglic Defense Initiative.

What is particularly appealing about decision tree analysis for evalu-
ating expert systems is the ability to use scenarios to represent, at a
collective level, the uncertainties inherent in the decision-making
situation facing members of the sponsoring team. Within decision tree
analysis, these scenarios represent the members’ hypotheses regarding
alternative states of the world, a perspective that is consistent with the
SHOR paradigm. Remember, at the broadest level, and particularly if the
situation permits it during the earliest steps of the development process,
the evaluator’'s job is to help members of the sponsoring team decide
whether development of an expert system is an effective option for dealing
with hypotheses regarding the current or future problem environment with

which the organization will be dealing.

From a decision-analytic perspective, the overall utility or, more
appropriately, expected utility, of different organizational options
including whether or not to develop an expert system, depends on the (a)
probabilities assigned to the various scenarios, and (b) the utility of
each of the options for each of the scenarios. This situation can be
illustrated by the concept of a payoff matrix, an example of which is
presented in Table 3-1. The rows of the matrix represent all the different
alternatives, including whether or not to develop the expert system, as
well as variations on a particular theme, available to organizational
decision makers (i.e., members of the sponsoring team). The columns
represent the different scunarios that could significantly affect the
attractiveness of the alternatives. The p,...p, values represent the

probabilities for each scenario, with their sum being 1.0. The cell
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entries in the matrix indicate the utility (or value) of the outcome or
"payoff" of each combination of options and scenarios. Each outcome is
presumed to represent a cumulative pavoff composed of perceived advantages
and disadvantages on multiple criteria of varyving ilmportance to the
decision maker{s). The "best" opntion is the one with the highest expected
utility, which is calculated for each option by firsc multiplving the
utilities for the outcomes and probabilities for the scenarios, and then

summing the products.

Table 3-1: A Simple Payoff Matrix

States of Nature

Alternatives (pnS, (P25, .. (Pe)Sk
A a, ay - a
B b; b, by
N ny n; ng

Substanzial care must be given to defining the scenarios and obtaining
the probability assessments. O’Connor and Edwards (1976) point cut that
not only do the scenarics have to be realistic, they have to be representa-
tive of a wide range of possible futures states of nature without being a
long, tedious list of uncertainties. Moreover, they have to be capable of
discriminating among the options in order to have any decision-making
value. 1In short, they need to be an appropriate sample from the total

scenario sample space.

With respect to probability assessments, "[t]he credibility of a
scenario to a subject seems to depend more on the coherence with which its
author has spun the tale than on its intrinsically ‘logical’ probability of
occurrence” (Spetzler and Staecl von Holstein, 1975, p. 347). Kahneman,
Slovie, and Tversky (1982) have compiled an anthology of researcn studies
demonstrating that, when compared to the tenets of probability and statis-
tical theory, humans have limited appreciation for the concepls of rance:
ness, statistical independence, sampling variability. data veijabilire,

regression effents, etc. To Tiote Hoagarth (1087 4™ . e
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statistical reasoning is entirely based on the logical structure of
information, causal reasoning is responsive to both content and structure.”
Moreover, the causal implications of the stimuli can often mask the logical
structure of the problem. Consequently, it is essential that the evaluator
using decision analysis give substantial care to presenting the scenarios
so that their logical probabilistic structure and, hence, relative likell-
hood can be better assessed by participating members of the sponsoring
team. This often requires using a decision tree to decompose the scenario

into the critical, uncertain events.

This point can be illustrated by considering an uncertainty dear to
the heart of members of the development team, which i< whether or not the
sponsoring agency can provide the necessary funding level for the expert
system throughout its development cycle. Figure 3-5 presents a highly
simplified, hypothetical probability tree representing only two uncertain
events: whether or not the funding environment is stable and, conditional

upon it, whether or not the funding level will be satisfied.

Cumulative
Probabilities
REQUEST SATISFIED (.56)
(8)
REQUEST NOT SATISFIED (.14)
{2
ENVIRONMENT
REGUEST SATISFIED (.06)
{-2)
[UNSTABLE
(.3}
REQUEST NOT SATISFIED (.24)
{8)

Figure 3-§: A Highly Simplified Probability Tree
for Illustrating the Uncertainty in Funding
for an Expert System throughout the Duration of the Deveiopment Process
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As you can see, we are assuming a good state of affairs. A stable funding
environment is considered twice as likely as an unstable environment. If
the environment is stable, we are assuming that it is four times as likelv
as not that the development team will receive the necessary funding If i+
is not stable, then we are assuming the opposite. If one multiplies ocut
the probabilities for each branch of the tree and then sums the probabil-
ities for the two branches resulting in the necessarv funding for the
expert system development effort, one finds, however, that the probabilir+

that the development team will have the necessary funding is actualiy only
.62,

The situation gets somewhat more discouraging if one now considers the
probability that the development team will develop an effective expert
system that will be used by the decision maker(s) for whom it is being
built. Figure 3-6 shows the probabilities for developing a "successful"”

expert system for each of the four branches of the tree in Figure 3-5,

Cumulative
Probabilities
EFFECTIVE ES (.392)
N
'REQUEST SATISFIED
t8) (168)
STABLE 3
%! EFFECTIVE ES (042}
3
REQUEST NOT SATISFIED (3)
2 (.098)
(N
ENVIRONMENT
EFFECTIVE ES {.042)
7
2EQUEST SATISFIED L7
2) {.018)
UNSTABLE (3)
(.3) EFFECTIVEES (072)
REQUEST NOT SATISFIED 3
@ \ENEEEEC.UMLES_ (.168)
(7
Figure 3-6: A Slightly Fxpanded Prohability Tree for the Hynnihetiond Coedl o Thamgtion
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Again, we have assumed a good state of affairs-—— two-to-one odds for
developing a "successful" expert system with the "necessary” funding.
However, after multiplying-out all the probabilitles in the tree and
summing the probabilities for the appropriate branches, one finds that the
probability of developing this "successful” expert system is 0.548—only a
little better than flipping a coin.

The purpose in presenting what one might consider to be a reasonable,
if not realistic, scenario is three-fold. The first purpose was to
illustrate the importance of considering the structure of a scenario, not
Just its content. Substantial care must be given to eliciting probabilicy
assessments when using decision tree analysis, particularly the greater the
ambiguity and the longer the time horizon for the uncertainties of
interest, which is typically the case in the development process. The
second purpose was to provide an alternative perspective on the sad fact
that many expert systems are not successfully implemented. From a statis-
tical perspective, a large number of things have to go right for successful
implementation. And the third purpose was to again emphasize the impor-
tance of considering the uncertainties inherent in decision-making situa-
tions. As the example illustrates, it way be just as important for the
development team as for the sponsoring team to consider these uncertain-
ties. Decision analysis can alert members of the development team as to
the uncertainties in the situation within which they will be working and,
thereby, help further clarify the general requirements that the expert
system will have to satisfy under various future conditions—for example,

if all the "necessary funding" does not actually become available.

In closing this brief discussion of decision tree analysis, it is
important to reiterate that decision tree analysis combines both probabil-
ity and utility assessment. As was i1llustrated with the payoff matrix
shown in Table 3-1, the "best" option is the one with the highest expected
utilicty which is calculated for each option by first multiplying the
overall values (i.e., utilities) for the outcomes and the probabilities for
the scenarios, and then summing the products. The payoff matrix can be
expanded (e.g., see Pitz and McKillip, 1984, p. 111) by using (a) a

decision tree to pictorially represent scenarios and, thereby, reflect the
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uncertainty in obtaining the outcomes for the options under consideration;
and (b) a MAUA hierarchy to illustrate that the overall utility for an
alternative, independent of the probability of obtaining it, is a composite
score on multiple attributes. The expected utility for each option under
consideration is the sum of the products for the probabilities for the
scenarios and the utilities for the attributes. Thus, consistent with the
SHOR paradigm, decision tree analysis is designed to assist decision maker:
in explicitly evaluating options in relation to hypotheses regarding the

uncertainties inherent in the organization’s future environment.

The process of performing a decision tree analysis is typically slow
and difficult, however, for the decision-analytic representation of the
problem can be quite large and the judgments quite extensive. Consequent-
ly, decision tree analysis 1s most viable if there is sufficient time (and
resources) for the evaluator to work with the sponsoring team when it is
still considering a range of options, that is, prior to Step 1 in the
development cycle, and preliminary discussions suggest that uncertainties
about the future environment may play a significant role in assessing the
viability of developing an expert system. Once the development process is
underway, however, the utility component is of most concern to test and
evaluation since the probability of alternative future environmental states

is not under the sponsoring or development team’s control,

MAUA-BASED COST-BENEFIT ANALYSIS

MAUA-based cost-benefit analysis has been used to help design,
completely on the basis of the decision makers’ own judgments, the most
beneficlal option packages for various levels of dollar cost. Although
this method is not as widely known as the subjective evaluation methods
described above, it has been successfully used to develop advanced helicop-
ter designs (Adelman, 1984), critical aspects of the U.S. Marine Corps’
annual budget (Watson and Buede, 1987), health and hospital services (Welss
and Zwahlen, 1982), and the training curriculum for a federal government
agency (Medlin and Adelman, 1989).
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The MAUA-based cost-benefit analysis approach has six basic steps: (1)
divide the problem into independent areas (or "variables") over which
benefits and costs can vary almost independently; then, (2) idencify
distinctly different actions (or "levels") on each variable that increase
in benefit and cost; (3) assess the relative benefit and cost of each level
on each variable; (4) assess the relative benefit of one variable against
another by using relative weights on the variables; (5) calculate the
change in benefit to the change in cost ratio for each level of each
variable as one moves from the lowest to the highest level of each vari-
able; and (6) use an optimization algorithm to calculate the efficient
allocations defining the most beneficial package (i.e., one level on each

variable) for varying degrees of (total) cost.

Vhen selecting a set of expert systems, the different variables
represent the different areas for which expert systems are being considered
by the sponsoring team. For example, assume that an organization is
considering the development of expert systems for each of three major
divisions (A, B, and C) within the organization. The initial level on a
variable (e.g., A) may represent either the status quo, which may be "no
expert system,” or the cheapest, most "bare-bones" concept for developing
that expert system. [n the ease study, the status quo of "no expert
system" 1s represented by level #0; the "bare-bones" concept is represented
by level #1. The last level on a variable represents the most expensive,
"gold-plated"” (yet realistic) conceptualization of the expert system for
that area. The intermediate levels on a variable represent intermediate
conceptualizations of the expert system as one moves from the "bare-bones”

to more "gold-plated" concepts.

A relative benefit scale is established for each variable such that
the Initial level is given s value of zero and the "gold-plated” concept is
given a value of 100. Paired comparison techniques are typically used to
determine the relative benefit of the intermediate conceptualizations of
the expert system on the variable. In particular, the focus is on how much
benefit an intermediate level provides between the two endpoints of the
veriable's scale—that is, between the "bare-bones" and "gold-plated”

conceptes. For example, is conceptualization #2 (e.g., level #2 on
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variable A) halfway in benefit between the "bare-bones” and "gold-plated"®
concepts? If the answer is "yes," then conceptualization #2 would get a
benefit score of 50 on that variable. If the answer is "no," then the
questioning focuses on how much less than 50. For example, is the relative
benefit 10% of the way between the "bare-bones" and "gold-plated" concepts
or 25% or 40%, etc.? Once a relative benefit score is obtained, the focus
shifts to conceptualization #3 on the variable, which must have a relative
benefit score between that for conceptualization #2 and the gold-plated
conceptualization. In answering these and related, relative-value ques-
tions, & subjective benefit scale is developed for each level of each
variable. [Note: A MAUA hierarchy with utility functions and weights can
be used too, although it is obviously a more complex approach than obtain-
ing pai;ed-comparison benefit values.]

&

R?lative importance weights are then used to Iindicate the relative
benefié of improving (from the initial level to "gold-plated") on each
variabie (i.e., A vs. B vs. C in our example). For example, let’s assume
that going from the status quo of "no expert system” to "gold-plated on
variable A was thought to be twice as beneficial as doing so on both
variables B and C, which are equally important. If the relative importance
weights sum to 100, then the relative weight on variable A would be 50 and
the relative weights on variables B and C would be 25. The overall benefit
given to any level on any variable can be compared to that for any other
level of another variable (except the initial level for a variable, which
is set to zero to indicate it's the starting point) by multiplying (a) the
relative weights for the variable and (b) the benefit value for the level
within the variable. For example, let’s assume that conceptualization #3
for variable A had a within-variable benefit value of 50. Since, in our
example, variable A has a relative weight of 50 and variable B has a
relative weight of 25, conceptualization #3 on variable A has the same
overall benefit as the gold-plated concept on variable B because 50 x 50
equals 100 x 25. ([Note: The overall benefit of each level for each
variable in the design could be assessed directly using paired comparison
techniques. However, experience suggests that participants find the above

procedure easier, particularly when there are many levels and variables.]
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In addition, a cost estimate also needs to be obtained for each
conceptualization, that is, for each level of each variable. The cost
estimate for the first level on each variable is important only in provid-
ing a reference point, for the analysis assumes that the starting point (or
first package of expert systems) is represented by the initial level on
each variable. The cost estimates could be in absolute dollars or in
"relative costs," depending upon which one the participants (or more
likely, the personnel responsible for software cost estimation) feel more
confident in using in the analysis. [Note: Conceptually, the cost could
be any resource with allocation constraints.] At this point one can
calculate the overall incremental benefits and costs of moving from one

level to another on each variable.

The goal is to maximize the benefit for the set of expert systems at
any given level of total dollar costs—that (s, to define the "efficient
frontier," such as the hypothetical one shown in Figure 3-7. Starting with
the first level on all the variables, which we have defined as the set of
expert systems with the lowest possible benefit relative to any other set,
we will follow three steps. First, we will calculate the incremental
change in benefit to change in cost ratio for each level of each variable
as one moves from the lowest to the highest level of each variable.
Second, we will order the levels on the basis of this ratio. Third, we
will sequentially select the level with the highest change in benefit to
change in cost ratio. Thus, each incremental point on the efficient
frontier will represent a set of expert systems that was identical to the
one that preceded it except for one change, that remaining level with the
highest change in benefit to change in cost level at that time. ([Notes:
If the analysis shows dips in the level-to-level analysis, incremental
benefit-to-cost ratios are calculated across multiple levels. Although
this algorithm may not derive all tke points on the efficient frontier, all
the points derived are on the frontier. Moreover, experience has shown
that it is easier than other approaches (such as integer programming) for
Jderision makers to understand the algorithm and follow its implications.
Finally, it can be readily programmed for, and will operate quickly on,

personal computers.]
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Figure 3-7: A Hypothetical Efficient Frontier

The MAUA-based cost-benefit analysis can also be used to jidentify the
most beneficial configuration of components of a particular expert system
at different levels of cost. In this case, the different components of the
expert system represent the different variables. The different potential
levels of sophistication of each component represent the levels on the
variables. Relative benefit values are obtained within and between
variables, and costs are obtained for each level. And the algorithm
described above is used to generate points on the efficient frontier

indicating the package of component parts providing the most benefit at
different levels of total cost.

CONSTRUCTING QUESTIONNATIRES TO ELICIT OPINIONS
Thus far, Chapter 3 has considered a number of different subjective

test and evaluation methods, most notably MAUA. The focus on these methods

has been toward helping the sponsoring and development team: (a) identify

3-26




evaluation criteria early in (if not prior to) development to guide the
development (as well as testing) process; (b) convert test scores into
utility measures; and (c¢) utilize explicit procedures for welghting, or in
some other fashion integrating test results on all the criteria into an
overall assessment of the expert system’s adequacy. As important as
obtaining an overall score for the expert system is assessing the expert
system’'s weaknesses, particularly for important criteria. This feedback
can, in turn, guide subsequent development efforts and, thereby, effective-

ly integrate test and evaluation into the development process.

In this section of Chapter 3, we consider the construction of subjec-
tive questionnaires for obtaining potential users’ opinions about che
expert system. In particular, we are concerned about users’ judgments of
the expert system’s performance and usability. Questionnaires were used to
obtain these judgments for the DART expert system described in Chapter 1.
In this section, we want to go over the basic issues inherent in question-
naire construction. Throughout the discussion we will assume that the
users’' responses to the questionnaire are used to score the expert system
on subjective criteria in the evaluation hierarchy, such as in the one

described in the next section of this chapter (and displayed in Table 2-1).

We begin this section by first defining twe critical measurement
concepts, reliability and validity. Rellability means that the measurement
instrument (e.g., questicnnaire) gives the same results when it is used on
two different occasions., The key idea here is "replication;" one can
repeat the measurement process with the same result. A basic assumption is
that there have been no changes in the object being measured (e.g., the
expert system) in-between the two measurement periods. By "validity" we
mean that the instrument is measuring what it is supposed to measure. A&n
instrument can be reliable (i.e., it produces the same results upon
replication), but invalid (i.e.. it reliably measures the wrong thing).
However, an instrument cannot be valid if it is totally unreliable because
thie latter implies that it will give very different answers when used to

measure the same thing on two or more occasions.
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We now consider how these two concepts were assessed for the question-
naire used in the test and evaluation of the DART expert system. (For more
information, see Adelman et al., 1985.) Prior to doing so, however, we
will review the characteriscics of the DART questionnaire. These are the
characteristics you should have in your questionnaires, assuming, of
course, that you use the same kind of questionnaire to obtain users’
opinions about an expert system. It is important to note that there are
other types of questionnaires. 7Two other types will also be overviewed

later in this section.

Characteristics o he D uestionnai

As you remembeyr, the DART questionnaire was designed to obtain users’
opinions about DART with respect to the evaluation criterlia identified in
Table 1-1. The questionnaire had a total of 121 questions. Most of the
questions assessed the bottom-level attributes in Table 1-1. However, 6
questions directly assessed overall utility (node 0.0 in Table 1-1), 2
questions directly assessed decision process quality (node 3.3 in Table 1-
1), and 3 questions each assessed the quality of the training sessions and
test scenarios (neither of which were evaluation criteria in Table 1-1,
although important to the test and evaluation team to assess for more

general reasons).

Two questions from the DART questionnaire are presented below 50 that
one can get a feeling for the kinds of questions used in the questionnaire.
The first question measures "response time" (attribute #1.2.1.4 in the
hierarchy); the second question measures "acceptability of time for task

accomplishment” (attribute #2.1.1.1).

I had to wait too long for the DART aid to respond to my inputs.

Very Neither Very

Strongly Disagree Strongly

Disagree Nor Agree Agree

0 1 2 3 4 5 6 7 8 9 10
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Use of the DART aid will not slow down the identification process now
used in the Tactical Air Controcl System.

Very Neither Very
Strongly Disagree Strongly
Disagree Nor Agree Agree
0 1 p 3 4 5 6 7 8 9 10

As can be seen, all questions required the participant to respond on a
eleven-point scale from 0 (very strongly disagree) to 10 (very strongly
agree), with 5 being "neither disagree nor agree."” This type of scale is
referred to as a Likert (1932) scale after Rensis Likert, the psychologist
who first developed 1t. The length of the scale (i.e., eleven points) and
the end points (i.e., 0 and 10) are arbitrary. We could have used a 3-,
5-, 7- or whatever point scale we wanted. We chose an eleven-pcin* s5cale
in order to give the users plenty of room to express the extent to which
they agreed or disagreed with each question which was written in the form
of a statement. The use of only positive numbers for the scale values was
also arbitrary. We could have used negative numbers to represent disagree-
ment and the O-point to represent "Neither Disagree Nor Agree." We chose
to use positive numbers because, as was illustrated by the first question
above, sometimes we wanted the user to disagree with the statement in order
to score DART highly. Therefore, we were concerned that the use of

negative numbers might be confusing.

There were two or more questions for each MOE criterion in an effort
to achieve greater confidence in the criterion scores. 1In addition, this
permitted us to calculate a split-half reliability measure, which is
described in the next subsection. The number in the parentheses to the
right of each bottom-level attribute in Table 1-1 indicates the number of
questions assessing it. The actaal number depended on the availability of
previously written questions assessing the criterion (e.g., from Sage and
White, 1980), the ease in writing “different-sounding" questions for the
criterion, and its depth in the hierarchy. We tended to use more questions
when we were measuring bottom-level attributes high in the hierarchy. For
example, we used seven questions to measure "decision accuracy” (attribute
#3.1), but only two questions to measure “response time” (attribute
#1.2 1.60.
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Haif the questions for each criterion were presented in each half of
the questionnaire in an effort to prevent the questions’ order in the
questiommaire from affecting the attributes’ scores. And, as will be seen,
this procedure is also appropriate for calculating a split-half reliabilicy
measure. In most cases, a high score indicated good performance, but
typically for one question measuring each criterion, a 1ow score indicated
good performance in an effort to ensure that the participants paid careful
attention to the questions. Prior to calculating attribute scores, the
users’ responses were rescaled as if the question were asked in a positive
fashion. DART's score on a bottom-level attribute was the mean score of
the participants' responses to the questions assessing {t. Values for
criteria moving up the hierarchy were the mean score for the criteria below

it.

As we noted in Chapter 1, by averaging lower-level attribute scores to
obtain upper-level criterion scores, one is giving each criterion equal
weight at its place in the hierarchy. For example, by averaging the mean
scores for "training” (attribute #1.1.1), "work style" (attribute #1.1.2),
and "operational needs” (attribute #1.1.3), each of three attributes
received a relative weight of 0.333 in determining the score on "match with
personnel” (attribute #1.1). Although it was quite possible that the
participating domain experts may have thought that certain bottom-level
criteria were more important than others, members of the test and evalua-
tion team thought it inappropriate to have the (DART) experts differential-
ly weight these criteria at the time of the evaluation because we wanted to
use the same weights for evaluating all five prototypes being developed on

the contract in order to provide a common evaluation baseline.

In closing this subsection, we want to emphasize that you should keep
the following points in mind when developing the questions for your
questionnaire. First, remember that people do not like completing ques-
tionnaires. Some people complete them as quickly as possible, often not
reading the questions carefully. Other people seem to scrutinize every
word and nuance in the question, just trying to find something wrong with
it. Consequently, try to keep the questions short and to the point. Do

not use qualifying phrases in a question if you can help it because




respondents may inadvertently respond to the qualifying phrase instead of
the principal one. In a similar vein, minimize the use of the word "not"
because respondents sometimes misinterpret it or fail to recognize {t when

they are rushing through a questionnaire.

Second, have a colleague critically review your questions. Ask that
colleague to suggest better ways of asking any questions they are having
trouble answering. Third, pilot-test your questionnaire with representa-
tive users before you actually use it to obtain users’ opinions of an
expert system. Ask the respondents to think aloud when they answer the
questions so you can assess whether others are interpreting the questions
in the way that you intended. If they have no objections, tape-record the
session so that you don’t have to rely on your memory. Revise questions
that are being misinterpreted by the pilot participants during the session
to see if you can reword them in a way that removes the ambiguities.
Continue pilot-testing the questionnaire until most (if not all) questions

are interpreted in the way you intended.
ab Valid e tioppaire

We now turn to consider how we assessed the reliability and validity
of the DART questionnaire. Since only four technical representatives and
three substantive domain experts participated in the DART test and evalua-
ticn, the reliability and validity assessments used the responses from all
the technical representatives and domain users who participated in testing
and evaluating the five decision-aiding system prototypes developed on the
contract. Remember, there were two evaluation sessions for each system.

In all cases, technical representatives from the Rome Air Development
Center (RADC) participated in rhe first session, and Air Force substantive
experts in the decision task for which the system was designed participated
in the second session. In general, each session followed the same format:
the first day was dedicated to providing a detailed overview of the system;
the second day was dedicated to providing the participants with "hands-on"
training in using the system; on the third day the participants worked test

problems with and without the system; and on the fourth day the partici-
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pants completed the questicnnaires and discussed the system prototype with

members of the test, development, and sponsoring teams.

In total, 15 Alr Ferce substantive experts aad 13 RADC technical
representatives participated in the sessions. The substantive experts, all
of whom were selected by the Tactical Alr Command, had years of experience
in the tactical decision-making area for which the system was developed;
most had minimal computer science training. In contrast, the technical
representatives had minimal, if any, substantive expertise in the areas for
which the aids were developed. Eleven of the technical representatives
were Alr Force personnel who, in most cases, had just recently received an
undergraduate degree and taken computer science coursework; the other two
technical representatives were civilians with technical backgrounds who had
worked on RADC projects for at least two years. In a number of cases, the
same technical representative participated in more than one evaluation. In
order to ensure that the results presented below were not skewed by the
opinion of these participants, we used only the questionnaire responses
from thelr first evaluation session. Finally, it should be mentioned here
that the tecnnical representatives' responses for one of the five =ystems
were not included in the analyses because the s